Cargando…
Application of Machine Learning in a Mineral Leaching Process—Taking Pyrolusite Leaching as an Example
[Image: see text] In this study, several machine learning models were used to analyze the process variables of electric-field-enhanced pyrolusite leaching and predict the leaching rate of manganese, and the applicability of those models in the leaching process of hydrometallurgy was compared. It sho...
Autores principales: | Zhang, Zheng, Zhang, Xianming, Zhang, Dan, Zhang, Xingran, Qiu, Facheng, Li, Wensheng, Liu, Zuohua, Shu, Jiancheng, Tang, Chengli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798733/ https://www.ncbi.nlm.nih.gov/pubmed/36591162 http://dx.doi.org/10.1021/acsomega.2c06129 |
Ejemplares similares
-
Leaching of Valuable Elements from the Waste Chromite
Ore Processing Residue: A Kinetic Analysis
por: Zhang, Xingran, et al.
Publicado: (2020) -
Copper Mineral Leaching Mathematical Models—A Review
por: Saldaña, Manuel, et al.
Publicado: (2022) -
Leaching Kinetics of Vanadium from Calcium-Roasting
High-Chromium Vanadium Slag Enhanced by Electric Field
por: Peng, Hao, et al.
Publicado: (2020) -
Harmonization of leaching : extration tests
por: Sloot, H. A. van der
Publicado: (1997) -
The Leaching Kinetics of Iron from Titanium Gypsum in a Citric Acid Medium and Obtain Materials by Leaching Liquid
por: Lin, Yan, et al.
Publicado: (2023)