Cargando…

Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells

[Image: see text] Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trappi...

Descripción completa

Detalles Bibliográficos
Autores principales: Monferrer, Alba, Kretzmann, Jessica A., Sigl, Christian, Sapelza, Pia, Liedl, Anna, Wittmann, Barbara, Dietz, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798855/
https://www.ncbi.nlm.nih.gov/pubmed/36323320
http://dx.doi.org/10.1021/acsnano.1c11328
_version_ 1784860993555267584
author Monferrer, Alba
Kretzmann, Jessica A.
Sigl, Christian
Sapelza, Pia
Liedl, Anna
Wittmann, Barbara
Dietz, Hendrik
author_facet Monferrer, Alba
Kretzmann, Jessica A.
Sigl, Christian
Sapelza, Pia
Liedl, Anna
Wittmann, Barbara
Dietz, Hendrik
author_sort Monferrer, Alba
collection PubMed
description [Image: see text] Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trapping properties by exploiting avidity and a widespread background affinity of viruses to heparan sulfate proteoglycans (HSPG). With a calibrated density of heparin and heparan sulfate (HS) derivatives crafted to the interior of DNA origami shells, we could encapsulate adeno, adeno-associated, chikungunya, dengue, human papilloma, noro, polio, rubella, and SARS-CoV-2 viruses or virus-like particles, in one and the same HS-functionalized shell system. Additional virus-type-specific binders were not needed for the trapping. Depending on the relative dimensions of shell to virus particles, multiple virus particles may be trapped per shell, and multiple shells can cover the surface of clusters of virus particles. The steric occlusion provided by the heparan sulfate-coated DNA origami shells can prevent viruses from further interactions with receptors, possibly including those found on cell surfaces.
format Online
Article
Text
id pubmed-9798855
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97988552022-12-30 Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells Monferrer, Alba Kretzmann, Jessica A. Sigl, Christian Sapelza, Pia Liedl, Anna Wittmann, Barbara Dietz, Hendrik ACS Nano [Image: see text] Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trapping properties by exploiting avidity and a widespread background affinity of viruses to heparan sulfate proteoglycans (HSPG). With a calibrated density of heparin and heparan sulfate (HS) derivatives crafted to the interior of DNA origami shells, we could encapsulate adeno, adeno-associated, chikungunya, dengue, human papilloma, noro, polio, rubella, and SARS-CoV-2 viruses or virus-like particles, in one and the same HS-functionalized shell system. Additional virus-type-specific binders were not needed for the trapping. Depending on the relative dimensions of shell to virus particles, multiple virus particles may be trapped per shell, and multiple shells can cover the surface of clusters of virus particles. The steric occlusion provided by the heparan sulfate-coated DNA origami shells can prevent viruses from further interactions with receptors, possibly including those found on cell surfaces. American Chemical Society 2022-11-02 2022-12-27 /pmc/articles/PMC9798855/ /pubmed/36323320 http://dx.doi.org/10.1021/acsnano.1c11328 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Monferrer, Alba
Kretzmann, Jessica A.
Sigl, Christian
Sapelza, Pia
Liedl, Anna
Wittmann, Barbara
Dietz, Hendrik
Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title_full Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title_fullStr Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title_full_unstemmed Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title_short Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells
title_sort broad-spectrum virus trapping with heparan sulfate-modified dna origami shells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798855/
https://www.ncbi.nlm.nih.gov/pubmed/36323320
http://dx.doi.org/10.1021/acsnano.1c11328
work_keys_str_mv AT monferreralba broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT kretzmannjessicaa broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT siglchristian broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT sapelzapia broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT liedlanna broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT wittmannbarbara broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells
AT dietzhendrik broadspectrumvirustrappingwithheparansulfatemodifieddnaorigamishells