Cargando…
Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
[Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered sys...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798866/ https://www.ncbi.nlm.nih.gov/pubmed/36475620 http://dx.doi.org/10.1021/acsnano.2c06673 |
_version_ | 1784860996126375936 |
---|---|
author | Vasileiadis, Thomas Noual, Adnane Wang, Yuchen Graczykowski, Bartlomiej Djafari-Rouhani, Bahram Yang, Shu Fytas, George |
author_facet | Vasileiadis, Thomas Noual, Adnane Wang, Yuchen Graczykowski, Bartlomiej Djafari-Rouhani, Bahram Yang, Shu Fytas, George |
author_sort | Vasileiadis, Thomas |
collection | PubMed |
description | [Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications. |
format | Online Article Text |
id | pubmed-9798866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97988662022-12-30 Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites Vasileiadis, Thomas Noual, Adnane Wang, Yuchen Graczykowski, Bartlomiej Djafari-Rouhani, Bahram Yang, Shu Fytas, George ACS Nano [Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications. American Chemical Society 2022-12-07 2022-12-27 /pmc/articles/PMC9798866/ /pubmed/36475620 http://dx.doi.org/10.1021/acsnano.2c06673 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Vasileiadis, Thomas Noual, Adnane Wang, Yuchen Graczykowski, Bartlomiej Djafari-Rouhani, Bahram Yang, Shu Fytas, George Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites |
title | Optomechanical Hot-Spots
in Metallic Nanorod–Polymer
Nanocomposites |
title_full | Optomechanical Hot-Spots
in Metallic Nanorod–Polymer
Nanocomposites |
title_fullStr | Optomechanical Hot-Spots
in Metallic Nanorod–Polymer
Nanocomposites |
title_full_unstemmed | Optomechanical Hot-Spots
in Metallic Nanorod–Polymer
Nanocomposites |
title_short | Optomechanical Hot-Spots
in Metallic Nanorod–Polymer
Nanocomposites |
title_sort | optomechanical hot-spots
in metallic nanorod–polymer
nanocomposites |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798866/ https://www.ncbi.nlm.nih.gov/pubmed/36475620 http://dx.doi.org/10.1021/acsnano.2c06673 |
work_keys_str_mv | AT vasileiadisthomas optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT noualadnane optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT wangyuchen optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT graczykowskibartlomiej optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT djafarirouhanibahram optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT yangshu optomechanicalhotspotsinmetallicnanorodpolymernanocomposites AT fytasgeorge optomechanicalhotspotsinmetallicnanorodpolymernanocomposites |