Cargando…

Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites

[Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered sys...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasileiadis, Thomas, Noual, Adnane, Wang, Yuchen, Graczykowski, Bartlomiej, Djafari-Rouhani, Bahram, Yang, Shu, Fytas, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798866/
https://www.ncbi.nlm.nih.gov/pubmed/36475620
http://dx.doi.org/10.1021/acsnano.2c06673
_version_ 1784860996126375936
author Vasileiadis, Thomas
Noual, Adnane
Wang, Yuchen
Graczykowski, Bartlomiej
Djafari-Rouhani, Bahram
Yang, Shu
Fytas, George
author_facet Vasileiadis, Thomas
Noual, Adnane
Wang, Yuchen
Graczykowski, Bartlomiej
Djafari-Rouhani, Bahram
Yang, Shu
Fytas, George
author_sort Vasileiadis, Thomas
collection PubMed
description [Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications.
format Online
Article
Text
id pubmed-9798866
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97988662022-12-30 Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites Vasileiadis, Thomas Noual, Adnane Wang, Yuchen Graczykowski, Bartlomiej Djafari-Rouhani, Bahram Yang, Shu Fytas, George ACS Nano [Image: see text] Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications. American Chemical Society 2022-12-07 2022-12-27 /pmc/articles/PMC9798866/ /pubmed/36475620 http://dx.doi.org/10.1021/acsnano.2c06673 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Vasileiadis, Thomas
Noual, Adnane
Wang, Yuchen
Graczykowski, Bartlomiej
Djafari-Rouhani, Bahram
Yang, Shu
Fytas, George
Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title_full Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title_fullStr Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title_full_unstemmed Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title_short Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
title_sort optomechanical hot-spots in metallic nanorod–polymer nanocomposites
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798866/
https://www.ncbi.nlm.nih.gov/pubmed/36475620
http://dx.doi.org/10.1021/acsnano.2c06673
work_keys_str_mv AT vasileiadisthomas optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT noualadnane optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT wangyuchen optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT graczykowskibartlomiej optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT djafarirouhanibahram optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT yangshu optomechanicalhotspotsinmetallicnanorodpolymernanocomposites
AT fytasgeorge optomechanicalhotspotsinmetallicnanorodpolymernanocomposites