Cargando…
Particle-associated bacteria in seawater dominate the colony-forming microbiome on ZoBell marine agar
Planktonic particle-associated bacteria comprise particle-attached and motile free-living cells. These groups were obtained by settlement in Imhoff cones. Dilution plating on marine agar 2216 (ZoBell marine agar) and microscopic counts indicated a cultivability of 0.7% (0.4%–1.2%) of bacteria in coa...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798892/ https://www.ncbi.nlm.nih.gov/pubmed/36513318 http://dx.doi.org/10.1093/femsec/fiac151 |
Sumario: | Planktonic particle-associated bacteria comprise particle-attached and motile free-living cells. These groups were obtained by settlement in Imhoff cones. Dilution plating on marine agar 2216 (ZoBell marine agar) and microscopic counts indicated a cultivability of 0.7% (0.4%–1.2%) of bacteria in coastal seawater collected at Helgoland Roads, North Sea. Particle-associated bacteria presented a minority population in seawater, but had a larger cultivability of 25% (0.9%–100%) for populations collected by settlement of particles and 5.7% (0.9%–24%) for populations collected by filtration. Partial 16S rRNA gene sequences indicated that 84% of the cultured taxa were either enriched in particle-associated microbiomes or only found in these microbiomes, including Sulfitobacter and other Rhodobacteraceae, Pseudoalteromonas, Psychromonas, Arcobacter and many Flavobacteriaceae. Illumina-based 16S rRNA V3V4 amplicon sequences of plate communities revealed that nearly all operational taxonomic units had a cultivated and described strain in close phylogenetic proximity. This suggested that decades of strain isolation from seawater on ZoBell marine agar had achieved a very good coverage of cultivable genera abundant in nature. The majority belonged to particle-associated bacteria, complementing observations that abundant free-living seawater bacteria often require cultivation conditions closer to their natural habitat like liquid cultivation in oligotrophic medium. |
---|