Cargando…

Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage

Inducing new phases of transition metal dichalcogenides by controlling the d‐electron‐count has attracted much interest due to their novel structures and physicochemical properties. 1T’’ ReSe(2) is a promising candidate for sodium storage, but the low electronic conductivity and limited active sites...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Yuqiang, Lv, Ximeng, Lv, Zhuoran, Wang, Yang, Zheng, Gengfeng, Huang, Fuqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798975/
https://www.ncbi.nlm.nih.gov/pubmed/36372525
http://dx.doi.org/10.1002/advs.202205680
_version_ 1784861018657128448
author Fang, Yuqiang
Lv, Ximeng
Lv, Zhuoran
Wang, Yang
Zheng, Gengfeng
Huang, Fuqiang
author_facet Fang, Yuqiang
Lv, Ximeng
Lv, Zhuoran
Wang, Yang
Zheng, Gengfeng
Huang, Fuqiang
author_sort Fang, Yuqiang
collection PubMed
description Inducing new phases of transition metal dichalcogenides by controlling the d‐electron‐count has attracted much interest due to their novel structures and physicochemical properties. 1T’’ ReSe(2) is a promising candidate for sodium storage, but the low electronic conductivity and limited active sites hinder its electrochemical capacity. Herein, new‐phase 1T’ Re(0.75)V(0.25)Se(2) crystals (P2/m) with zig‐zag chains are successfully synthesized. The 1T’’‐1T’ phase transition results from the electronic reorganization of 5d orbitals via electron extraction after V‐atom doping. The electrical conductivity of 1T’ Re(0.75)V(0.25)Se(2) is 2.7 × 10(5) times higher than that of 1T’’ ReSe(2). Moreover, density functional theory (DFT) calculations reveal that 1T’ Re(0.75)V(0.25)Se(2) has a larger interlayer spacing, lower bonding energy, and migration energy barrier for Na(+) ions than 1T’’ ReSe(2). As a result, 1T’ Re(0.75)V(0.25)Se(2) electrode shows an excellent rate capability of 203 mAh g(−1) at 50 C with no capacity fading over 5000 cycles for sodium storage, which is superior to most reported sodium‐ion anode materials. This 1T’ Re(0.75)V(0.25)Se(2) provides a new platform for various applications such as electronics, catalysis, and energy storage.
format Online
Article
Text
id pubmed-9798975
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97989752023-01-05 Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage Fang, Yuqiang Lv, Ximeng Lv, Zhuoran Wang, Yang Zheng, Gengfeng Huang, Fuqiang Adv Sci (Weinh) Research Articles Inducing new phases of transition metal dichalcogenides by controlling the d‐electron‐count has attracted much interest due to their novel structures and physicochemical properties. 1T’’ ReSe(2) is a promising candidate for sodium storage, but the low electronic conductivity and limited active sites hinder its electrochemical capacity. Herein, new‐phase 1T’ Re(0.75)V(0.25)Se(2) crystals (P2/m) with zig‐zag chains are successfully synthesized. The 1T’’‐1T’ phase transition results from the electronic reorganization of 5d orbitals via electron extraction after V‐atom doping. The electrical conductivity of 1T’ Re(0.75)V(0.25)Se(2) is 2.7 × 10(5) times higher than that of 1T’’ ReSe(2). Moreover, density functional theory (DFT) calculations reveal that 1T’ Re(0.75)V(0.25)Se(2) has a larger interlayer spacing, lower bonding energy, and migration energy barrier for Na(+) ions than 1T’’ ReSe(2). As a result, 1T’ Re(0.75)V(0.25)Se(2) electrode shows an excellent rate capability of 203 mAh g(−1) at 50 C with no capacity fading over 5000 cycles for sodium storage, which is superior to most reported sodium‐ion anode materials. This 1T’ Re(0.75)V(0.25)Se(2) provides a new platform for various applications such as electronics, catalysis, and energy storage. John Wiley and Sons Inc. 2022-11-13 /pmc/articles/PMC9798975/ /pubmed/36372525 http://dx.doi.org/10.1002/advs.202205680 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Fang, Yuqiang
Lv, Ximeng
Lv, Zhuoran
Wang, Yang
Zheng, Gengfeng
Huang, Fuqiang
Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title_full Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title_fullStr Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title_full_unstemmed Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title_short Electron‐Extraction Engineering Induced 1T’’‐1T’ Phase Transition of Re(0.75)V(0.25)Se(2) for Ultrafast Sodium Ion Storage
title_sort electron‐extraction engineering induced 1t’’‐1t’ phase transition of re(0.75)v(0.25)se(2) for ultrafast sodium ion storage
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798975/
https://www.ncbi.nlm.nih.gov/pubmed/36372525
http://dx.doi.org/10.1002/advs.202205680
work_keys_str_mv AT fangyuqiang electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage
AT lvximeng electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage
AT lvzhuoran electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage
AT wangyang electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage
AT zhenggengfeng electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage
AT huangfuqiang electronextractionengineeringinduced1t1tphasetransitionofre075v025se2forultrafastsodiumionstorage