Cargando…

From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units

Transfusion of packed red blood cells (pRBCs) saves lives, but iron overload limits survival of chronically transfused patients. Quality control methods, which involve entering pRBC units and removing them from the blood supply, reveal that hemoglobin (38.5–79.9 g) and heme iron (133.42–276.89 mg) v...

Descripción completa

Detalles Bibliográficos
Autores principales: Epah, Jeremy, Gülec, Ilay, Winter, Stefan, Dörr, Johanna, Geisen, Christof, Haecker, Eva, Link, Dietmar, Schwab, Matthias, Seifried, Erhard, Schäfer, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798979/
https://www.ncbi.nlm.nih.gov/pubmed/36333123
http://dx.doi.org/10.1002/advs.202204077
_version_ 1784861019609235456
author Epah, Jeremy
Gülec, Ilay
Winter, Stefan
Dörr, Johanna
Geisen, Christof
Haecker, Eva
Link, Dietmar
Schwab, Matthias
Seifried, Erhard
Schäfer, Richard
author_facet Epah, Jeremy
Gülec, Ilay
Winter, Stefan
Dörr, Johanna
Geisen, Christof
Haecker, Eva
Link, Dietmar
Schwab, Matthias
Seifried, Erhard
Schäfer, Richard
author_sort Epah, Jeremy
collection PubMed
description Transfusion of packed red blood cells (pRBCs) saves lives, but iron overload limits survival of chronically transfused patients. Quality control methods, which involve entering pRBC units and removing them from the blood supply, reveal that hemoglobin (38.5–79.9 g) and heme iron (133.42–276.89 mg) vary substantially between pRBCs. Yet, neither hemoglobin nor iron content can be quantified for individual clinically used pRBCs leading to rules of thumb for pRBC transfusions. Keeping their integrity, the authors seek to predict hemoglobin/iron content of any given pRBC unit applying eight machine learning models on 6,058 pRBCs. Based on thirteen features routinely collected during blood donation, production and quality control testing, the model with best trade‐off between performance and complexity in hemoglobin/iron content prediction is identified. Validation of this model in an independent cohort of 2637 pRBCs confirms an adjusted R (2) > 0.9 corresponding to a mean absolute prediction error of ≤1.43 g hemoglobin/4.96 mg iron (associated standard deviation: ≤1.13 g hemoglobin/3.92 mg iron). Such unprecedented precise prediction enables reliable pRBC dosing per pharmaceutically active agent, and monitoring iron uptake in patients and individual iron loss in donors. The model is implemented in a free open source web application to facilitate clinical application.
format Online
Article
Text
id pubmed-9798979
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97989792023-01-05 From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units Epah, Jeremy Gülec, Ilay Winter, Stefan Dörr, Johanna Geisen, Christof Haecker, Eva Link, Dietmar Schwab, Matthias Seifried, Erhard Schäfer, Richard Adv Sci (Weinh) Research Articles Transfusion of packed red blood cells (pRBCs) saves lives, but iron overload limits survival of chronically transfused patients. Quality control methods, which involve entering pRBC units and removing them from the blood supply, reveal that hemoglobin (38.5–79.9 g) and heme iron (133.42–276.89 mg) vary substantially between pRBCs. Yet, neither hemoglobin nor iron content can be quantified for individual clinically used pRBCs leading to rules of thumb for pRBC transfusions. Keeping their integrity, the authors seek to predict hemoglobin/iron content of any given pRBC unit applying eight machine learning models on 6,058 pRBCs. Based on thirteen features routinely collected during blood donation, production and quality control testing, the model with best trade‐off between performance and complexity in hemoglobin/iron content prediction is identified. Validation of this model in an independent cohort of 2637 pRBCs confirms an adjusted R (2) > 0.9 corresponding to a mean absolute prediction error of ≤1.43 g hemoglobin/4.96 mg iron (associated standard deviation: ≤1.13 g hemoglobin/3.92 mg iron). Such unprecedented precise prediction enables reliable pRBC dosing per pharmaceutically active agent, and monitoring iron uptake in patients and individual iron loss in donors. The model is implemented in a free open source web application to facilitate clinical application. John Wiley and Sons Inc. 2022-11-04 /pmc/articles/PMC9798979/ /pubmed/36333123 http://dx.doi.org/10.1002/advs.202204077 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Epah, Jeremy
Gülec, Ilay
Winter, Stefan
Dörr, Johanna
Geisen, Christof
Haecker, Eva
Link, Dietmar
Schwab, Matthias
Seifried, Erhard
Schäfer, Richard
From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title_full From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title_fullStr From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title_full_unstemmed From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title_short From Unit to Dose: A Machine Learning Approach for Precise Prediction of Hemoglobin and Iron Content in Individual Packed Red Blood Cell Units
title_sort from unit to dose: a machine learning approach for precise prediction of hemoglobin and iron content in individual packed red blood cell units
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798979/
https://www.ncbi.nlm.nih.gov/pubmed/36333123
http://dx.doi.org/10.1002/advs.202204077
work_keys_str_mv AT epahjeremy fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT gulecilay fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT winterstefan fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT dorrjohanna fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT geisenchristof fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT haeckereva fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT linkdietmar fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT schwabmatthias fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT seifriederhard fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits
AT schaferrichard fromunittodoseamachinelearningapproachforprecisepredictionofhemoglobinandironcontentinindividualpackedredbloodcellunits