Cargando…

Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics

Solution‐processed solar cells are promising for the cost‐effective, high‐throughput production of photovoltaic devices. Colloidal quantum dots (CQDs) are attractive candidate materials for efficient, solution‐processed solar cells, potentially realizing the broad‐spectrum light utilization and mult...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Yuwen, Wang, Haibin, Wang, Yinglin, Wang, Chao, Li, Xiaofei, Kubo, Takaya, Liu, Yichun, Zhang, Xintong, Segawa, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799018/
https://www.ncbi.nlm.nih.gov/pubmed/36285698
http://dx.doi.org/10.1002/advs.202204725
_version_ 1784861029268717568
author Jia, Yuwen
Wang, Haibin
Wang, Yinglin
Wang, Chao
Li, Xiaofei
Kubo, Takaya
Liu, Yichun
Zhang, Xintong
Segawa, Hiroshi
author_facet Jia, Yuwen
Wang, Haibin
Wang, Yinglin
Wang, Chao
Li, Xiaofei
Kubo, Takaya
Liu, Yichun
Zhang, Xintong
Segawa, Hiroshi
author_sort Jia, Yuwen
collection PubMed
description Solution‐processed solar cells are promising for the cost‐effective, high‐throughput production of photovoltaic devices. Colloidal quantum dots (CQDs) are attractive candidate materials for efficient, solution‐processed solar cells, potentially realizing the broad‐spectrum light utilization and multi‐exciton generation effect for the future efficiency breakthrough of solar cells. The emerging quantum junction solar cells (QJSCs), constructed by n‐ and p‐type CQDs only, open novel avenue for all‐quantum‐dot photovoltaics with a simplified device configuration and convenient processing technology. However, the development of high‐efficiency QJSCs still faces the challenge of back carrier diffusion induced by the huge carrier density drop at the interface of CQDs and conductive glass substrate. Herein, an ultra‐thin atomic layer deposited tin oxide (SnO(x)) layer is employed to buffer this carrier density drop, significantly reducing the interfacial recombination and capacitance caused by the back carrier diffusion. The SnO(x)‐modified QJSC achieves a record‐high efficiency of 11.55% and a suppressed hysteresis factor of 0.04 in contrast with reference QJSC with an efficiency of 10.4% and hysteresis factor of 0.48. This work clarifies the critical effect of interfacial issues on the carrier recombination and hysteresis of QJSCs, and provides an effective pathway to design high‐performance all‐quantum‐dot devices.
format Online
Article
Text
id pubmed-9799018
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97990182023-01-05 Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics Jia, Yuwen Wang, Haibin Wang, Yinglin Wang, Chao Li, Xiaofei Kubo, Takaya Liu, Yichun Zhang, Xintong Segawa, Hiroshi Adv Sci (Weinh) Research Articles Solution‐processed solar cells are promising for the cost‐effective, high‐throughput production of photovoltaic devices. Colloidal quantum dots (CQDs) are attractive candidate materials for efficient, solution‐processed solar cells, potentially realizing the broad‐spectrum light utilization and multi‐exciton generation effect for the future efficiency breakthrough of solar cells. The emerging quantum junction solar cells (QJSCs), constructed by n‐ and p‐type CQDs only, open novel avenue for all‐quantum‐dot photovoltaics with a simplified device configuration and convenient processing technology. However, the development of high‐efficiency QJSCs still faces the challenge of back carrier diffusion induced by the huge carrier density drop at the interface of CQDs and conductive glass substrate. Herein, an ultra‐thin atomic layer deposited tin oxide (SnO(x)) layer is employed to buffer this carrier density drop, significantly reducing the interfacial recombination and capacitance caused by the back carrier diffusion. The SnO(x)‐modified QJSC achieves a record‐high efficiency of 11.55% and a suppressed hysteresis factor of 0.04 in contrast with reference QJSC with an efficiency of 10.4% and hysteresis factor of 0.48. This work clarifies the critical effect of interfacial issues on the carrier recombination and hysteresis of QJSCs, and provides an effective pathway to design high‐performance all‐quantum‐dot devices. John Wiley and Sons Inc. 2022-10-26 /pmc/articles/PMC9799018/ /pubmed/36285698 http://dx.doi.org/10.1002/advs.202204725 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jia, Yuwen
Wang, Haibin
Wang, Yinglin
Wang, Chao
Li, Xiaofei
Kubo, Takaya
Liu, Yichun
Zhang, Xintong
Segawa, Hiroshi
Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title_full Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title_fullStr Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title_full_unstemmed Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title_short Ultra‐Thin SnO(x) Buffer Layer Enables High‐Efficiency Quantum Junction Photovoltaics
title_sort ultra‐thin sno(x) buffer layer enables high‐efficiency quantum junction photovoltaics
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799018/
https://www.ncbi.nlm.nih.gov/pubmed/36285698
http://dx.doi.org/10.1002/advs.202204725
work_keys_str_mv AT jiayuwen ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT wanghaibin ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT wangyinglin ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT wangchao ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT lixiaofei ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT kubotakaya ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT liuyichun ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT zhangxintong ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics
AT segawahiroshi ultrathinsnoxbufferlayerenableshighefficiencyquantumjunctionphotovoltaics