Cargando…
Experimental Identification of the Second‐Order Non‐Hermitian Skin Effect with Physics‐Graph‐Informed Machine Learning
Topological phases of matter are conventionally characterized by the bulk‐boundary correspondence in Hermitian systems. The topological invariant of the bulk in d dimensions corresponds to the number of (d − 1)‐dimensional boundary states. By extension, higher‐order topological insulators reveal a b...
Autores principales: | Shang, Ce, Liu, Shuo, Shao, Ruiwen, Han, Peng, Zang, Xiaoning, Zhang, Xiangliang, Salama, Khaled Nabil, Gao, Wenlong, Lee, Ching Hua, Thomale, Ronny, Manchon, Aurélien, Zhang, Shuang, Cui, Tie Jun, Schwingenschlögl, Udo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799024/ https://www.ncbi.nlm.nih.gov/pubmed/36372546 http://dx.doi.org/10.1002/advs.202202922 |
Ejemplares similares
-
Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
por: Liu, Shuo, et al.
Publicado: (2021) -
Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs
por: Lu, Yong, et al.
Publicado: (2017) -
Observation of higher-order non-Hermitian skin effect
por: Zhang, Xiujuan, et al.
Publicado: (2021) -
Photonic topological fermi nodal disk in non-Hermitian magnetic plasma
por: Wang, Wenhui, et al.
Publicado: (2020) -
Non-Hermitian route to higher-order topology in an acoustic crystal
por: Gao, He, et al.
Publicado: (2021)