Cargando…
Recalibrating probabilistic forecasts of epidemics
Distributional forecasts are important for a wide variety of applications, including forecasting epidemics. Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future events. We present a recalibration method that can be applied to a black-box forecaster given retrospective...
Autores principales: | Rumack, Aaron, Tibshirani, Ryan J., Rosenfeld, Roni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799311/ https://www.ncbi.nlm.nih.gov/pubmed/36520949 http://dx.doi.org/10.1371/journal.pcbi.1010771 |
Ejemplares similares
-
Epidemic tracking and forecasting: Lessons learned from a tumultuous year
por: Rosenfeld, Roni, et al.
Publicado: (2021) -
Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States
por: Ray, Evan L., et al.
Publicado: (2023) -
An open challenge to advance probabilistic forecasting for dengue epidemics
por: Johansson, Michael A., et al.
Publicado: (2019) -
A human judgment approach to epidemiological forecasting
por: Farrow, David C., et al.
Publicado: (2017) -
Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions
por: Brooks, Logan C., et al.
Publicado: (2018)