Cargando…
Performance Analysis of Bloom Filter for Big Data Analytics
The rapid rise of data value, such as social media and mobile applications, results in large volumes of data, which is what the term “big data” refers to. The increased rate of data growth makes handling big data very challenging. Despite a Bloom filter (BF) technique having previously been proposed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800092/ https://www.ncbi.nlm.nih.gov/pubmed/36590840 http://dx.doi.org/10.1155/2022/2414605 |
_version_ | 1784861221077385216 |
---|---|
author | Alsuhibany, Suliman A. Alsuhaibani, Mohammed Khan, Rehan Ullah Qamar, Ali Mustafa |
author_facet | Alsuhibany, Suliman A. Alsuhaibani, Mohammed Khan, Rehan Ullah Qamar, Ali Mustafa |
author_sort | Alsuhibany, Suliman A. |
collection | PubMed |
description | The rapid rise of data value, such as social media and mobile applications, results in large volumes of data, which is what the term “big data” refers to. The increased rate of data growth makes handling big data very challenging. Despite a Bloom filter (BF) technique having previously been proposed as a space-and-time efficient probabilistic method, this proposal has not yet been evaluated in terms of big data. This study, thus, evaluates the BF technique by conducting an experimental study with a large amount of data. The results revealed that BF overcomes the efficiency not present in the space-and-time of indexing and examining big data. Moreover, to address the increase of false-positive rate in using BF with big data, a novel false-positive rate reduction approach is proposed in this paper. The initial experimental results of evaluating this method are very promising. The novel approach helped to reduce the false-positive rate by more than 70%. |
format | Online Article Text |
id | pubmed-9800092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-98000922022-12-30 Performance Analysis of Bloom Filter for Big Data Analytics Alsuhibany, Suliman A. Alsuhaibani, Mohammed Khan, Rehan Ullah Qamar, Ali Mustafa Comput Intell Neurosci Research Article The rapid rise of data value, such as social media and mobile applications, results in large volumes of data, which is what the term “big data” refers to. The increased rate of data growth makes handling big data very challenging. Despite a Bloom filter (BF) technique having previously been proposed as a space-and-time efficient probabilistic method, this proposal has not yet been evaluated in terms of big data. This study, thus, evaluates the BF technique by conducting an experimental study with a large amount of data. The results revealed that BF overcomes the efficiency not present in the space-and-time of indexing and examining big data. Moreover, to address the increase of false-positive rate in using BF with big data, a novel false-positive rate reduction approach is proposed in this paper. The initial experimental results of evaluating this method are very promising. The novel approach helped to reduce the false-positive rate by more than 70%. Hindawi 2022-12-22 /pmc/articles/PMC9800092/ /pubmed/36590840 http://dx.doi.org/10.1155/2022/2414605 Text en Copyright © 2022 Suliman A. Alsuhibany et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Alsuhibany, Suliman A. Alsuhaibani, Mohammed Khan, Rehan Ullah Qamar, Ali Mustafa Performance Analysis of Bloom Filter for Big Data Analytics |
title | Performance Analysis of Bloom Filter for Big Data Analytics |
title_full | Performance Analysis of Bloom Filter for Big Data Analytics |
title_fullStr | Performance Analysis of Bloom Filter for Big Data Analytics |
title_full_unstemmed | Performance Analysis of Bloom Filter for Big Data Analytics |
title_short | Performance Analysis of Bloom Filter for Big Data Analytics |
title_sort | performance analysis of bloom filter for big data analytics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800092/ https://www.ncbi.nlm.nih.gov/pubmed/36590840 http://dx.doi.org/10.1155/2022/2414605 |
work_keys_str_mv | AT alsuhibanysulimana performanceanalysisofbloomfilterforbigdataanalytics AT alsuhaibanimohammed performanceanalysisofbloomfilterforbigdataanalytics AT khanrehanullah performanceanalysisofbloomfilterforbigdataanalytics AT qamaralimustafa performanceanalysisofbloomfilterforbigdataanalytics |