Cargando…
Expression and distribution of generated neurons and endogenous precursors in rat cerebral cortical venous ischemia
Neurogenesis in the subventricular zone (SVZ), subgranular zone (SGZ), and cerebral cortex is now a familiar event to confirm by cerebral arterial ischemia in rat models. However, it remains unclear whether cerebral venous ischemia (CVI) alone causes neurogenesis, and where that neurogenesis occurs....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800262/ https://www.ncbi.nlm.nih.gov/pubmed/36590247 http://dx.doi.org/10.1016/j.ibneur.2022.12.005 |
Sumario: | Neurogenesis in the subventricular zone (SVZ), subgranular zone (SGZ), and cerebral cortex is now a familiar event to confirm by cerebral arterial ischemia in rat models. However, it remains unclear whether cerebral venous ischemia (CVI) alone causes neurogenesis, and where that neurogenesis occurs. After creating CVI rat models via a two-vein occlusion (2-VO) method, neurogenesis was immunohistochemically evaluated by double-labeling 5-bromo-2′-deoxyuridine (BrdU)-positive cells with neuronal nuclei (NeuN) or doublecortin (DCX) antibody. Fifty Wistar rats were divided into two major groups (BrdU-NeuN and BrdU-DCX) and then separated into two subgroups (2-VO or sham). The total number of double-positive cells expressed inside a predefined region of interest (ROI) covering the ischemic area was compared between the two subgroups. Then, we divided the ROI into six sections to evaluate and compare the distribution of double-positive cells generated in each section between the two subgroups. The 2-VO subgroup presented more double-positive cells than the sham group in both BrdU-NeuN and BrdU-DCX groups, while the BrdU-DCX+2-VO group showed a characteristic distribution of double-positive cells in ROI 2 and ROI 3, suggesting areas of the ischemic core and penumbra, with a significant difference compared to the BrdU-DCX+sham group. This study demonstrates that CVI has the potential to induce endogenous neurogenesis, with significant numbers of both newly generated neurons and precursors observed in the ischemic area. The distribution of these cells suggests that the cortex could be the main origin of neurogenesis after cortical CVI. |
---|