Cargando…
Exploring influential nodes using global and local information
In complex networks, key nodes are important factors that directly affect network structure and functions. Therefore, accurate mining and identification of key nodes are crucial to achieving better control and a higher utilization rate of complex networks. To address this problem, this paper propose...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800360/ https://www.ncbi.nlm.nih.gov/pubmed/36581651 http://dx.doi.org/10.1038/s41598-022-26984-4 |
Sumario: | In complex networks, key nodes are important factors that directly affect network structure and functions. Therefore, accurate mining and identification of key nodes are crucial to achieving better control and a higher utilization rate of complex networks. To address this problem, this paper proposes an accurate and efficient algorithm for critical node mining. The influential nodes are determined using both global and local information (GLI) to solve the shortcoming of the existing key node identification methods that consider either local or global information. The proposed method considers two main factors, global and local influences. The global influence is determined using the K-shell hierarchical information of a node, and local influence is obtained considering the number of edges connected by the node and the given values of adjacent nodes. The given values of adjacent nodes are determined based on the degree and K-shell hierarchical information. Further, the similarity coefficient of neighbors is considered, which enhances the differentiation degree of the adjacent given values. The proposed method solves the problems of the high complexity of global information-based algorithms and the low accuracy of local information-based algorithms. The proposed method is verified by simulation experiments using the SIR and SI models as a reference, and twelve typical real-world networks are used for the comparison. The proposed GLI algorithm is compared with several common algorithms at different periods. The comparison results show that the GLI algorithm can effectively explore influential nodes in complex networks. |
---|