Cargando…
Thermometry of stored molecular ion beams
The radiative cooling of a stored, initially rotationally hot OH[Formula: see text] ion beam is probed by photodetachment using an electrostatic ion beam trap combined with an in-trap velocity map imaging spectrometer, providing direct measurement of the time-dependent rotational population. The rot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800383/ https://www.ncbi.nlm.nih.gov/pubmed/36581645 http://dx.doi.org/10.1038/s41598-022-26797-5 |
Sumario: | The radiative cooling of a stored, initially rotationally hot OH[Formula: see text] ion beam is probed by photodetachment using an electrostatic ion beam trap combined with an in-trap velocity map imaging spectrometer, providing direct measurement of the time-dependent rotational population. The rotational temperatures are estimated from photodetached electron spectra as a function of time using a Boltzmann distribution model and further verified by a rate law model using known Einstein coefficients. We demonstrate that during the entire cooling time, the rotational population can be well described by a Boltzmann distribution. |
---|