Cargando…
Detection of pulmonary embolism severity using clinical characteristics, hematological indices, and machine learning techniques
INTRODUCTION: Pulmonary embolism (PE) is a cardiopulmonary condition that can be fatal. PE can lead to sudden cardiovascular collapse and is potentially life-threatening, necessitating risk classification to modify therapy following the diagnosis of PE. We collected clinical characteristics, routine...
Autores principales: | Su, Hang, Han, Zhengyuan, Fu, Yujie, Zhao, Dong, Yu, Fanhua, Heidari, Ali Asghar, Zhang, Yu, Shou, Yeqi, Wu, Peiliang, Chen, Huiling, Chen, Yanfan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800512/ https://www.ncbi.nlm.nih.gov/pubmed/36590906 http://dx.doi.org/10.3389/fninf.2022.1029690 |
Ejemplares similares
-
A new machine learning model for predicting severity prognosis in patients with pulmonary embolism: Study protocol from Wenzhou, China
por: Su, Hang, et al.
Publicado: (2022) -
Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine
por: Hu, Jiao, et al.
Publicado: (2022) -
Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images
por: Su, Hang, et al.
Publicado: (2022) -
Evolutionary warning system for COVID-19 severity: Colony predation algorithm enhanced extreme learning machine
por: Shi, Beibei, et al.
Publicado: (2021) -
Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators
por: Hu, Jiao, et al.
Publicado: (2022)