Cargando…

Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata

Magnolia sinostellata is one of the endangered species in China and largely suffers light deficiency stress in the understory of forest. However, the weak light response molecular mechanism remains unclear. More importantly, hub genes in the molecular network have not been pinpointed. To explore pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Danying, Xu, Bin, Yu, Qin, Liu, Zhigao, Ren, Mingjie, Wang, Yaling, Zhang, Shouzhou, Wu, Chao, Shen, Yamei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800573/
https://www.ncbi.nlm.nih.gov/pubmed/36581613
http://dx.doi.org/10.1038/s41598-022-25393-x
Descripción
Sumario:Magnolia sinostellata is one of the endangered species in China and largely suffers light deficiency stress in the understory of forest. However, the weak light response molecular mechanism remains unclear. More importantly, hub genes in the molecular network have not been pinpointed. To explore potential regulators in the mechanism, weighted gene co-expression network analysis (WGCNA) was performed to analysis the trancriptome data of M. sinostellata leaves subjected to weak light with different time points. Gene co-expression analysis illustrated that module 1, 2 and 3 were closely associated with light deficiency treatment, which. Gene ontology and KEGG analyses showed that genes in module 1 mainly participated in amino and nucleotide metabolism, module 2 mostly involved in carbon fixation and module 3 mostly regulated photosynthesis related pathways, among which 6, 7 and 8 hub genes were identified, respectively. Hub genes isoform_107196 in module 1 and isoform_55976 in module 2 were unique to M. sinostellata. This study found that light deficiency inhibited photosynthesis and stress tolerance, while improved carbon metabolism and flowering related pathways in M. sinostellata, which can impact its accumulation reserves of growth and reproduction in the next season. In addition, key shade response regulators identified in this study have laid a firm foundation for further investigation of shade response molecular mechanism and protection of other shade sensitive plants.