Cargando…

Integrated radiomics, dose-volume histogram criteria and clinical features for early prediction of saliva amount reduction after radiotherapy in nasopharyngeal cancer patients

PURPOSE: Previously, the evaluation of xerostomia depended on subjective grading systems, rather than the accurate saliva amount reduction. Our aim was to quantify acute xerostomia with reduced saliva amount, and apply radiomics, dose-volume histogram (DVH) criteria and clinical features to predict...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Lang, Zheng, Wanjia, Huang, Sijuan, Yang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800672/
https://www.ncbi.nlm.nih.gov/pubmed/36581739
http://dx.doi.org/10.1007/s12672-022-00606-x
Descripción
Sumario:PURPOSE: Previously, the evaluation of xerostomia depended on subjective grading systems, rather than the accurate saliva amount reduction. Our aim was to quantify acute xerostomia with reduced saliva amount, and apply radiomics, dose-volume histogram (DVH) criteria and clinical features to predict saliva amount reduction by machine learning techniques. MATERIAL AND METHODS: Computed tomography (CT) of parotid glands, DVH, and clinical data of 52 patients were collected to extract radiomics, DVH criteria and clinical features, respectively. Firstly, radiomics, DVH criteria and clinical features were divided into 3 groups for feature selection, in order to alleviate the masking effect of the number of features in different groups. Secondly, the top features in the 3 groups composed integrated features, and features selection was performed again for integrated features. In this study, feature selection was used as a combination of eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP) to alleviate multicollinearity. Finally, 6 machine learning techniques were used for predicting saliva amount reduction. Meanwhile, top radiomics features were modeled using the same machine learning techniques for comparison. RESULT: 17 integrated features (10 radiomics, 4 clinical, 3 DVH criteria) were selected to predict saliva amount reduction, with a mean square error (MSE) of 0.6994 and a R(2) score of 0.9815. Top 17 and 10 selected radiomics features predicted saliva amount reduction, with MSE of 0.7376, 0.7519, and R(2) score of 0.9805, 0.9801, respectively. CONCLUSION: With the same number of features, integrated features (radiomics + DVH criteria + clinical) performed better than radiomics features alone. The important DVH criteria and clinical features mainly included, white blood cells (WBC), parotid_glands_Dmax, Age, parotid_glands_V15, hemoglobin (Hb), BMI and parotid_glands_V45.