Cargando…

Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol

BACKGROUND: In recent years, different tools have been developed to facilitate analysis of social determinants of health (SDH) and apply this to health policy. The possibility of generating predictive models of health outcomes which combine a wide range of socioeconomic indicators with health proble...

Descripción completa

Detalles Bibliográficos
Autores principales: Couso-Viana, Sabela, Bentué-Martínez, Carmen, Delgado-Martín, María Victoria, Cabeza-Irigoyen, Elena, León-Latre, Montserrat, Concheiro-Guisán, Ana, Rodríguez-Álvarez, María Xosé, Román-Rodríguez, Miguel, Roca-Pardiñas, Javier, Zúñiga-Antón, María, García-Flaquer, Ana, Pericàs-Pulido, Pau, Sánchez-Recio, Raquel, González-Álvarez, Beatriz, Rodríguez-Pastoriza, Sara, Gómez-Gómez, Irene, Motrico, Emma, Jiménez-Murillo, José Luís, Rabanaque, Isabel, Clavería, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800778/
https://www.ncbi.nlm.nih.gov/pubmed/36590942
http://dx.doi.org/10.3389/fmed.2022.1012437
_version_ 1784861354567401472
author Couso-Viana, Sabela
Bentué-Martínez, Carmen
Delgado-Martín, María Victoria
Cabeza-Irigoyen, Elena
León-Latre, Montserrat
Concheiro-Guisán, Ana
Rodríguez-Álvarez, María Xosé
Román-Rodríguez, Miguel
Roca-Pardiñas, Javier
Zúñiga-Antón, María
García-Flaquer, Ana
Pericàs-Pulido, Pau
Sánchez-Recio, Raquel
González-Álvarez, Beatriz
Rodríguez-Pastoriza, Sara
Gómez-Gómez, Irene
Motrico, Emma
Jiménez-Murillo, José Luís
Rabanaque, Isabel
Clavería, Ana
author_facet Couso-Viana, Sabela
Bentué-Martínez, Carmen
Delgado-Martín, María Victoria
Cabeza-Irigoyen, Elena
León-Latre, Montserrat
Concheiro-Guisán, Ana
Rodríguez-Álvarez, María Xosé
Román-Rodríguez, Miguel
Roca-Pardiñas, Javier
Zúñiga-Antón, María
García-Flaquer, Ana
Pericàs-Pulido, Pau
Sánchez-Recio, Raquel
González-Álvarez, Beatriz
Rodríguez-Pastoriza, Sara
Gómez-Gómez, Irene
Motrico, Emma
Jiménez-Murillo, José Luís
Rabanaque, Isabel
Clavería, Ana
author_sort Couso-Viana, Sabela
collection PubMed
description BACKGROUND: In recent years, different tools have been developed to facilitate analysis of social determinants of health (SDH) and apply this to health policy. The possibility of generating predictive models of health outcomes which combine a wide range of socioeconomic indicators with health problems is an approach that is receiving increasing attention. Our objectives are twofold: (1) to predict population health outcomes measured as hospital morbidity, taking primary care (PC) morbidity adjusted for SDH as predictors; and (2) to analyze the geographic variability of the impact of SDH-adjusted PC morbidity on hospital morbidity, by combining data sourced from electronic health records and selected operations of the National Statistics Institute (Instituto Nacional de Estadística/INE). METHODS: The following will be conducted: a qualitative study to select socio-health indicators using RAND methodology in accordance with SDH frameworks, based on indicators published by the INE in selected operations; and a quantitative study combining two large databases drawn from different Spain’s Autonomous Regions (ARs) to enable hospital morbidity to be ascertained, i.e., PC electronic health records and the minimum basic data set (MBDS) for hospital discharges. These will be linked to socioeconomic indicators, previously selected by geographic unit. The outcome variable will be hospital morbidity, and the independent variables will be age, sex, PC morbidity, geographic unit, and socioeconomic indicators. ANALYSIS: To achieve the first objective, predictive models will be used, with a test-and-training technique, fitting multiple logistic regression models. In the analysis of geographic variability, penalized mixed models will be used, with geographic units considered as random effects and independent predictors as fixed effects. DISCUSSION: This study seeks to show the relationship between SDH and population health, and the geographic differences determined by such determinants. The main limitations are posed by the collection of data for healthcare as opposed to research purposes, and the time lag between collection and publication of data, sampling errors and missing data in registries and surveys. The main strength lies in the project’s multidisciplinary nature (family medicine, pediatrics, public health, nursing, psychology, engineering, geography).
format Online
Article
Text
id pubmed-9800778
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98007782022-12-31 Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol Couso-Viana, Sabela Bentué-Martínez, Carmen Delgado-Martín, María Victoria Cabeza-Irigoyen, Elena León-Latre, Montserrat Concheiro-Guisán, Ana Rodríguez-Álvarez, María Xosé Román-Rodríguez, Miguel Roca-Pardiñas, Javier Zúñiga-Antón, María García-Flaquer, Ana Pericàs-Pulido, Pau Sánchez-Recio, Raquel González-Álvarez, Beatriz Rodríguez-Pastoriza, Sara Gómez-Gómez, Irene Motrico, Emma Jiménez-Murillo, José Luís Rabanaque, Isabel Clavería, Ana Front Med (Lausanne) Medicine BACKGROUND: In recent years, different tools have been developed to facilitate analysis of social determinants of health (SDH) and apply this to health policy. The possibility of generating predictive models of health outcomes which combine a wide range of socioeconomic indicators with health problems is an approach that is receiving increasing attention. Our objectives are twofold: (1) to predict population health outcomes measured as hospital morbidity, taking primary care (PC) morbidity adjusted for SDH as predictors; and (2) to analyze the geographic variability of the impact of SDH-adjusted PC morbidity on hospital morbidity, by combining data sourced from electronic health records and selected operations of the National Statistics Institute (Instituto Nacional de Estadística/INE). METHODS: The following will be conducted: a qualitative study to select socio-health indicators using RAND methodology in accordance with SDH frameworks, based on indicators published by the INE in selected operations; and a quantitative study combining two large databases drawn from different Spain’s Autonomous Regions (ARs) to enable hospital morbidity to be ascertained, i.e., PC electronic health records and the minimum basic data set (MBDS) for hospital discharges. These will be linked to socioeconomic indicators, previously selected by geographic unit. The outcome variable will be hospital morbidity, and the independent variables will be age, sex, PC morbidity, geographic unit, and socioeconomic indicators. ANALYSIS: To achieve the first objective, predictive models will be used, with a test-and-training technique, fitting multiple logistic regression models. In the analysis of geographic variability, penalized mixed models will be used, with geographic units considered as random effects and independent predictors as fixed effects. DISCUSSION: This study seeks to show the relationship between SDH and population health, and the geographic differences determined by such determinants. The main limitations are posed by the collection of data for healthcare as opposed to research purposes, and the time lag between collection and publication of data, sampling errors and missing data in registries and surveys. The main strength lies in the project’s multidisciplinary nature (family medicine, pediatrics, public health, nursing, psychology, engineering, geography). Frontiers Media S.A. 2022-12-16 /pmc/articles/PMC9800778/ /pubmed/36590942 http://dx.doi.org/10.3389/fmed.2022.1012437 Text en Copyright © 2022 Couso-Viana, Bentué-Martínez, Delgado-Martín, Cabeza-Irigoyen, León-Latre, Concheiro-Guisán, Rodríguez-Álvarez, Román-Rodríguez, Roca-Pardiñas, Zúñiga-Antón, García-Flaquer, Pericàs-Pulido, Sánchez-Recio, González-Álvarez, Rodríguez-Pastoriza, Gómez-Gómez, Motrico, Jiménez-Murillo, Rabanaque and Clavería. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Couso-Viana, Sabela
Bentué-Martínez, Carmen
Delgado-Martín, María Victoria
Cabeza-Irigoyen, Elena
León-Latre, Montserrat
Concheiro-Guisán, Ana
Rodríguez-Álvarez, María Xosé
Román-Rodríguez, Miguel
Roca-Pardiñas, Javier
Zúñiga-Antón, María
García-Flaquer, Ana
Pericàs-Pulido, Pau
Sánchez-Recio, Raquel
González-Álvarez, Beatriz
Rodríguez-Pastoriza, Sara
Gómez-Gómez, Irene
Motrico, Emma
Jiménez-Murillo, José Luís
Rabanaque, Isabel
Clavería, Ana
Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title_full Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title_fullStr Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title_full_unstemmed Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title_short Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol
title_sort analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: a research protocol
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800778/
https://www.ncbi.nlm.nih.gov/pubmed/36590942
http://dx.doi.org/10.3389/fmed.2022.1012437
work_keys_str_mv AT cousovianasabela analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT bentuemartinezcarmen analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT delgadomartinmariavictoria analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT cabezairigoyenelena analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT leonlatremontserrat analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT concheiroguisanana analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT rodriguezalvarezmariaxose analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT romanrodriguezmiguel analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT rocapardinasjavier analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT zunigaantonmaria analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT garciaflaquerana analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT pericaspulidopau analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT sanchezrecioraquel analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT gonzalezalvarezbeatriz analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT rodriguezpastorizasara analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT gomezgomezirene analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT motricoemma analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT jimenezmurillojoseluis analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT rabanaqueisabel analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol
AT claveriaana analysisoftheimpactofsocialdeterminantsandprimarycaremorbidityonpopulationhealthoutcomesbycombiningbigdataaresearchprotocol