Cargando…
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning
Light traps have been widely used for automatic monitoring of pests in the field as an alternative to time-consuming and labor-intensive manual investigations. However, the scale variation, complex background and dense distribution of pests in light-trap images bring challenges to the rapid and accu...
Autores principales: | Zhang, Wei, Huang, He, Sun, Youqiang, Wu, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800973/ https://www.ncbi.nlm.nih.gov/pubmed/36589124 http://dx.doi.org/10.3389/fpls.2022.1079384 |
Ejemplares similares
-
AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild
por: Wang, Rujing, et al.
Publicado: (2021) -
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting
por: Wen, Changji, et al.
Publicado: (2022) -
ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition
por: Wang, Fenmei, et al.
Publicado: (2022) -
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
por: Liu, Jun, et al.
Publicado: (2020) -
Editorial: Deep learning in crop diseases and insect pests
por: Chen, Peng, et al.
Publicado: (2023)