Cargando…

CIVIT dataset: Integral microscopy with Fourier plane recording

This article describes a dataset of synthetic images representing biological scenery as captured by a Fourier Lightfield Microscope (FLMic). It includes 22,416 images related to eight scenes composed of 3D models of objects typical for biological samples, such as red blood cells and bacteria, and ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreschini, Sergio, Gama, Filipe, Bregovic, Robert, Gotchev, Atanas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801074/
https://www.ncbi.nlm.nih.gov/pubmed/36591387
http://dx.doi.org/10.1016/j.dib.2022.108819
Descripción
Sumario:This article describes a dataset of synthetic images representing biological scenery as captured by a Fourier Lightfield Microscope (FLMic). It includes 22,416 images related to eight scenes composed of 3D models of objects typical for biological samples, such as red blood cells and bacteria, and categorized into Cells and Filaments groups. For each scene, two types of image data structures are provided: 51 × 51 Elemental Images (EIs) representing Densely Sampled Light Fields (DSLF) and 201 images composing Z-Scans of the scenes. Auxiliary data also includes information about camera intrinsic and extrinsic calibration parameters, object descriptions, and MATLAB scripts for camera pose compensation. The images have been generated using Blender. The dataset can be used to develop and assess methods for volumetric reconstruction from Light Field (LF) images captured by a FLMic.