Cargando…
Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study
OBJECTIVE: Neurologic complications seriously affect the survival rate and quality of life in patients with extracorporeal cardiopulmonary resuscitation (ECPR) undergoing cardiac arrest. This study aimed to repurpose selective hypothermic cerebral perfusion (SHCP) as a novel approach to protect the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801244/ https://www.ncbi.nlm.nih.gov/pubmed/36590735 http://dx.doi.org/10.1016/j.xjon.2022.07.007 |
_version_ | 1784861461322924032 |
---|---|
author | Zhai, Kerong Li, Mingming Li, Jian Wei, Shilin Li, Zhenzhen Zhang, Yanchun Gao, Bingren Wu, Xiangyang Li, Yongnan |
author_facet | Zhai, Kerong Li, Mingming Li, Jian Wei, Shilin Li, Zhenzhen Zhang, Yanchun Gao, Bingren Wu, Xiangyang Li, Yongnan |
author_sort | Zhai, Kerong |
collection | PubMed |
description | OBJECTIVE: Neurologic complications seriously affect the survival rate and quality of life in patients with extracorporeal cardiopulmonary resuscitation (ECPR) undergoing cardiac arrest. This study aimed to repurpose selective hypothermic cerebral perfusion (SHCP) as a novel approach to protect the brains of these patients. METHODS: Rats were randomly allocated to Sham, ECPR, and SHCP combined ECPR (CP-ECPR) groups. In the ECPR group, circulatory resuscitation was performed at 6 minutes after asphyxial cardiac arrest by extracorporeal membrane oxygenation. The vital signs were monitored for 3 hours, and body and brain temperatures were maintained at the normal level. In the CP-ECPR group, the right carotid artery catheterization serving as cerebral perfusion was connected with the extracorporeal membrane oxygenation device to achieve selective brain cooling (26-28 °C). Serum markers of brain injury and pathomorphologic changes in the hippocampus were evaluated. Three biological replicates further received RNA sequencing in ECPR and CP-ECPR groups. Microglia activation and inflammatory cytokines in brain tissues and serum were detected. RESULTS: SHCP rapidly reduced the brain-targeted temperature and significantly alleviated nerve injury. This was evident from the reduced brain injury serum biomarker levels, lower pathologic scores, and more surviving neurons in the hippocampus in the CP-ECPR group. Furthermore, more differentially expressed genes for inflammatory responses were clustered functionally according to Kyoto Encyclopedia of Genes and Genomes pathway analysis. And SHCP reduced microglia activation and the release of proinflammatory mediators. CONCLUSIONS: Our preliminary data indicate that SHCP may serve as a potential therapy to attenuate brain injury via downregulation of neuroinflammation in patients with ECPR. |
format | Online Article Text |
id | pubmed-9801244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98012442022-12-31 Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study Zhai, Kerong Li, Mingming Li, Jian Wei, Shilin Li, Zhenzhen Zhang, Yanchun Gao, Bingren Wu, Xiangyang Li, Yongnan JTCVS Open Adult: Mechanical Circulatory Support: Basic Science OBJECTIVE: Neurologic complications seriously affect the survival rate and quality of life in patients with extracorporeal cardiopulmonary resuscitation (ECPR) undergoing cardiac arrest. This study aimed to repurpose selective hypothermic cerebral perfusion (SHCP) as a novel approach to protect the brains of these patients. METHODS: Rats were randomly allocated to Sham, ECPR, and SHCP combined ECPR (CP-ECPR) groups. In the ECPR group, circulatory resuscitation was performed at 6 minutes after asphyxial cardiac arrest by extracorporeal membrane oxygenation. The vital signs were monitored for 3 hours, and body and brain temperatures were maintained at the normal level. In the CP-ECPR group, the right carotid artery catheterization serving as cerebral perfusion was connected with the extracorporeal membrane oxygenation device to achieve selective brain cooling (26-28 °C). Serum markers of brain injury and pathomorphologic changes in the hippocampus were evaluated. Three biological replicates further received RNA sequencing in ECPR and CP-ECPR groups. Microglia activation and inflammatory cytokines in brain tissues and serum were detected. RESULTS: SHCP rapidly reduced the brain-targeted temperature and significantly alleviated nerve injury. This was evident from the reduced brain injury serum biomarker levels, lower pathologic scores, and more surviving neurons in the hippocampus in the CP-ECPR group. Furthermore, more differentially expressed genes for inflammatory responses were clustered functionally according to Kyoto Encyclopedia of Genes and Genomes pathway analysis. And SHCP reduced microglia activation and the release of proinflammatory mediators. CONCLUSIONS: Our preliminary data indicate that SHCP may serve as a potential therapy to attenuate brain injury via downregulation of neuroinflammation in patients with ECPR. Elsevier 2022-08-03 /pmc/articles/PMC9801244/ /pubmed/36590735 http://dx.doi.org/10.1016/j.xjon.2022.07.007 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Adult: Mechanical Circulatory Support: Basic Science Zhai, Kerong Li, Mingming Li, Jian Wei, Shilin Li, Zhenzhen Zhang, Yanchun Gao, Bingren Wu, Xiangyang Li, Yongnan Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title | Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title_full | Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title_fullStr | Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title_full_unstemmed | Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title_short | Neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: A preclinical study |
title_sort | neuroprotective effect of selective hypothermic cerebral perfusion in extracorporeal cardiopulmonary resuscitation: a preclinical study |
topic | Adult: Mechanical Circulatory Support: Basic Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801244/ https://www.ncbi.nlm.nih.gov/pubmed/36590735 http://dx.doi.org/10.1016/j.xjon.2022.07.007 |
work_keys_str_mv | AT zhaikerong neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT limingming neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT lijian neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT weishilin neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT lizhenzhen neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT zhangyanchun neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT gaobingren neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT wuxiangyang neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy AT liyongnan neuroprotectiveeffectofselectivehypothermiccerebralperfusioninextracorporealcardiopulmonaryresuscitationapreclinicalstudy |