Cargando…
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
BACKGROUND: Effectively decoding electroencephalogram (EEG) pattern for specific mental tasks is a crucial topic in the development of brain-computer interface (BCI). Extracting common spatial pattern (CSP) features from motor imagery EEG signals is often highly dependent on the selection of frequen...
Autores principales: | Shi, Bin, Chen, Xiaokai, Yue, Zan, Zeng, Feixiang, Yin, Shuai, Wang, Benguo, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801329/ https://www.ncbi.nlm.nih.gov/pubmed/36589278 http://dx.doi.org/10.3389/fncom.2022.1004301 |
Ejemplares similares
-
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Decoding Algorithm of Motor Imagery Electroencephalogram Signal Based on CLRNet Network Model
por: Zhang, Chaozhu, et al.
Publicado: (2023) -
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022)