Cargando…

A neuro swarm procedure to solve the novel second order perturbed delay Lane-Emden model arising in astrophysics

The current work provides a mathematical second order perturbed singular delay differential model (SO-PSDDM) by using the standard form of the Lane-Emden model. The inclusive structures based on the delay terms, singular-point and perturbation factor and shape forms of the SO-PSDDM are provided. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabir, Zulqurnain, Said, Salem Ben, Al-Mdallal, Qasem, Ali, Mohamed R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801359/
https://www.ncbi.nlm.nih.gov/pubmed/36585422
http://dx.doi.org/10.1038/s41598-022-26566-4
Descripción
Sumario:The current work provides a mathematical second order perturbed singular delay differential model (SO-PSDDM) by using the standard form of the Lane-Emden model. The inclusive structures based on the delay terms, singular-point and perturbation factor and shape forms of the SO-PSDDM are provided. The novel form of the SO-PSDDM is numerically solved by using the procedures of artificial neural networks (ANNs) along with the optimization measures based on the swarming procedures (PSO) and interior-point algorithm (IPA). An error function is optimized through the swarming PSO procedure along with the IPA to solve the SO-PSDDM. The precision, substantiation and validation are observed for three problems of the SO-PSDDM. The exactness of the novel SO-PSDDM is observed by comparing the obtained and exact solutions. The reliability, stability and convergence of the proposed stochastic algorithms are observed for 30 independent trials to solve the novel SO-PSDDM.