Cargando…

Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations

[Image: see text] The Ruddlesden–Popper (A(n+1)B(n)O(3n+1)) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleck, Erin E., Barone, Matthew R., Nair, Hari P., Schreiber, Nathaniel J., Dawley, Natalie M., Schlom, Darrell G., Goodge, Berit H., Kourkoutis, Lena F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801418/
https://www.ncbi.nlm.nih.gov/pubmed/36473700
http://dx.doi.org/10.1021/acs.nanolett.2c03893
_version_ 1784861493313929216
author Fleck, Erin E.
Barone, Matthew R.
Nair, Hari P.
Schreiber, Nathaniel J.
Dawley, Natalie M.
Schlom, Darrell G.
Goodge, Berit H.
Kourkoutis, Lena F.
author_facet Fleck, Erin E.
Barone, Matthew R.
Nair, Hari P.
Schreiber, Nathaniel J.
Dawley, Natalie M.
Schlom, Darrell G.
Goodge, Berit H.
Kourkoutis, Lena F.
author_sort Fleck, Erin E.
collection PubMed
description [Image: see text] The Ruddlesden–Popper (A(n+1)B(n)O(3n+1)) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different n-phases based on atomic-resolution scanning transmission electron microscopy (STEM) images. We employ image phase analysis to identify horizontal Ruddlesden–Popper faults within the lattice images and quantify the local structure. Our semiautomated technique considers effects of finite projection thickness, limited fields of view, and lateral sampling rates. This method retains real-space distribution of layer variations allowing for spatial mapping of local n-phases to enable quantification of intergrowth occurrence and qualitative description of their distribution suitable for a wide range of layered materials.
format Online
Article
Text
id pubmed-9801418
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-98014182022-12-31 Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations Fleck, Erin E. Barone, Matthew R. Nair, Hari P. Schreiber, Nathaniel J. Dawley, Natalie M. Schlom, Darrell G. Goodge, Berit H. Kourkoutis, Lena F. Nano Lett [Image: see text] The Ruddlesden–Popper (A(n+1)B(n)O(3n+1)) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different n-phases based on atomic-resolution scanning transmission electron microscopy (STEM) images. We employ image phase analysis to identify horizontal Ruddlesden–Popper faults within the lattice images and quantify the local structure. Our semiautomated technique considers effects of finite projection thickness, limited fields of view, and lateral sampling rates. This method retains real-space distribution of layer variations allowing for spatial mapping of local n-phases to enable quantification of intergrowth occurrence and qualitative description of their distribution suitable for a wide range of layered materials. American Chemical Society 2022-12-06 2022-12-28 /pmc/articles/PMC9801418/ /pubmed/36473700 http://dx.doi.org/10.1021/acs.nanolett.2c03893 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Fleck, Erin E.
Barone, Matthew R.
Nair, Hari P.
Schreiber, Nathaniel J.
Dawley, Natalie M.
Schlom, Darrell G.
Goodge, Berit H.
Kourkoutis, Lena F.
Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title_full Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title_fullStr Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title_full_unstemmed Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title_short Atomic-Scale Mapping and Quantification of Local Ruddlesden–Popper Phase Variations
title_sort atomic-scale mapping and quantification of local ruddlesden–popper phase variations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801418/
https://www.ncbi.nlm.nih.gov/pubmed/36473700
http://dx.doi.org/10.1021/acs.nanolett.2c03893
work_keys_str_mv AT fleckerine atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT baronematthewr atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT nairharip atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT schreibernathanielj atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT dawleynataliem atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT schlomdarrellg atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT goodgeberith atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations
AT kourkoutislenaf atomicscalemappingandquantificationoflocalruddlesdenpopperphasevariations