Cargando…

Estimating axial diffusivity in the NODDI model

To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the...

Descripción completa

Detalles Bibliográficos
Autores principales: Howard, Amy FD, Cottaar, Michiel, Drakesmith, Mark, Fan, Qiuyun, Huang, Susie Y., Jones, Derek K., Lange, Frederik J., Mollink, Jeroen, Rudrapatna, Suryanarayana Umesh, Tian, Qiyuan, Miller, Karla L, Jbabdi, Saad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802007/
https://www.ncbi.nlm.nih.gov/pubmed/35931306
http://dx.doi.org/10.1016/j.neuroimage.2022.119535
_version_ 1784861603708010496
author Howard, Amy FD
Cottaar, Michiel
Drakesmith, Mark
Fan, Qiuyun
Huang, Susie Y.
Jones, Derek K.
Lange, Frederik J.
Mollink, Jeroen
Rudrapatna, Suryanarayana Umesh
Tian, Qiyuan
Miller, Karla L
Jbabdi, Saad
author_facet Howard, Amy FD
Cottaar, Michiel
Drakesmith, Mark
Fan, Qiuyun
Huang, Susie Y.
Jones, Derek K.
Lange, Frederik J.
Mollink, Jeroen
Rudrapatna, Suryanarayana Umesh
Tian, Qiyuan
Miller, Karla L
Jbabdi, Saad
author_sort Howard, Amy FD
collection PubMed
description To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d(∥) = 1.7 μm(2)/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ~ 2 – 2.5 μm(2)/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.
format Online
Article
Text
id pubmed-9802007
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-98020072022-12-30 Estimating axial diffusivity in the NODDI model Howard, Amy FD Cottaar, Michiel Drakesmith, Mark Fan, Qiuyun Huang, Susie Y. Jones, Derek K. Lange, Frederik J. Mollink, Jeroen Rudrapatna, Suryanarayana Umesh Tian, Qiyuan Miller, Karla L Jbabdi, Saad Neuroimage Article To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d(∥) = 1.7 μm(2)/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ~ 2 – 2.5 μm(2)/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data. 2022-11-15 2022-08-02 /pmc/articles/PMC9802007/ /pubmed/35931306 http://dx.doi.org/10.1016/j.neuroimage.2022.119535 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) )
spellingShingle Article
Howard, Amy FD
Cottaar, Michiel
Drakesmith, Mark
Fan, Qiuyun
Huang, Susie Y.
Jones, Derek K.
Lange, Frederik J.
Mollink, Jeroen
Rudrapatna, Suryanarayana Umesh
Tian, Qiyuan
Miller, Karla L
Jbabdi, Saad
Estimating axial diffusivity in the NODDI model
title Estimating axial diffusivity in the NODDI model
title_full Estimating axial diffusivity in the NODDI model
title_fullStr Estimating axial diffusivity in the NODDI model
title_full_unstemmed Estimating axial diffusivity in the NODDI model
title_short Estimating axial diffusivity in the NODDI model
title_sort estimating axial diffusivity in the noddi model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802007/
https://www.ncbi.nlm.nih.gov/pubmed/35931306
http://dx.doi.org/10.1016/j.neuroimage.2022.119535
work_keys_str_mv AT howardamyfd estimatingaxialdiffusivityinthenoddimodel
AT cottaarmichiel estimatingaxialdiffusivityinthenoddimodel
AT drakesmithmark estimatingaxialdiffusivityinthenoddimodel
AT fanqiuyun estimatingaxialdiffusivityinthenoddimodel
AT huangsusiey estimatingaxialdiffusivityinthenoddimodel
AT jonesderekk estimatingaxialdiffusivityinthenoddimodel
AT langefrederikj estimatingaxialdiffusivityinthenoddimodel
AT mollinkjeroen estimatingaxialdiffusivityinthenoddimodel
AT rudrapatnasuryanarayanaumesh estimatingaxialdiffusivityinthenoddimodel
AT tianqiyuan estimatingaxialdiffusivityinthenoddimodel
AT millerkarlal estimatingaxialdiffusivityinthenoddimodel
AT jbabdisaad estimatingaxialdiffusivityinthenoddimodel