Cargando…

Three-dimensional nanoscale analysis of light-dependent organelle changes in Arabidopsis mesophyll cells

Different organelles function coordinately in numerous intracellular processes. Photorespiration incidental to photosynthetic carbon fixation is organized across three subcellular compartments: chloroplasts, peroxisomes, and mitochondria. Under light conditions, these three organelles often form a t...

Descripción completa

Detalles Bibliográficos
Autores principales: Midorikawa, Keiko, Tateishi, Ayaka, Toyooka, Kiminori, Sato, Mayuko, Imai, Takuto, Kodama, Yutaka, Numata, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802074/
https://www.ncbi.nlm.nih.gov/pubmed/36712360
http://dx.doi.org/10.1093/pnasnexus/pgac225
Descripción
Sumario:Different organelles function coordinately in numerous intracellular processes. Photorespiration incidental to photosynthetic carbon fixation is organized across three subcellular compartments: chloroplasts, peroxisomes, and mitochondria. Under light conditions, these three organelles often form a ternary organellar complex in close proximity, suggesting a connection with metabolism during photorespiration. However, due to the heterogeneity of intercellular organelle localization and morphology, organelles' responses to changes in the external environment remain poorly understood. Here, we used array tomography by field emission scanning electron microscopy to image organelles inside the whole plant cell at nanometer resolution, generating a three-dimensional (3D) spatial map of the light-dependent positioning of chloroplasts, peroxisomes, nuclei, and vacuoles. Our results show, in light-treated cells, the volume of peroxisomes increased, and mitochondria were simplified. In addition, the population of free organelles decreased, and the ternary complex centered on chloroplasts increased. Moreover, our results emphasized the expansion of the proximity area rather than the increase in the number of proximity sites interorganelles. All of these phenomena were quantified for the first time on the basis of nanoscale spatial maps. In summary, we provide the first 3D reconstruction of Arabidopsis mesophyll cells, together with nanoscale quantified organelle morphology and their positioning via proximity areas, and then evidence of their light-dependent changes.