Cargando…

On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability

We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output...

Descripción completa

Detalles Bibliográficos
Autores principales: Evangelou, Nikolaos, Wichrowski, Noah J, Kevrekidis, George A, Dietrich, Felix, Kooshkbaghi, Mahdi, McFann, Sarah, Kevrekidis, Ioannis G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802152/
https://www.ncbi.nlm.nih.gov/pubmed/36714862
http://dx.doi.org/10.1093/pnasnexus/pgac154
_version_ 1784861625697697792
author Evangelou, Nikolaos
Wichrowski, Noah J
Kevrekidis, George A
Dietrich, Felix
Kooshkbaghi, Mahdi
McFann, Sarah
Kevrekidis, Ioannis G
author_facet Evangelou, Nikolaos
Wichrowski, Noah J
Kevrekidis, George A
Dietrich, Felix
Kooshkbaghi, Mahdi
McFann, Sarah
Kevrekidis, Ioannis G
author_sort Evangelou, Nikolaos
collection PubMed
description We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.
format Online
Article
Text
id pubmed-9802152
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98021522023-01-26 On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability Evangelou, Nikolaos Wichrowski, Noah J Kevrekidis, George A Dietrich, Felix Kooshkbaghi, Mahdi McFann, Sarah Kevrekidis, Ioannis G PNAS Nexus Physical Sciences and Engineering We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically. Oxford University Press 2022-09-14 /pmc/articles/PMC9802152/ /pubmed/36714862 http://dx.doi.org/10.1093/pnasnexus/pgac154 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical Sciences and Engineering
Evangelou, Nikolaos
Wichrowski, Noah J
Kevrekidis, George A
Dietrich, Felix
Kooshkbaghi, Mahdi
McFann, Sarah
Kevrekidis, Ioannis G
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title_full On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title_fullStr On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title_full_unstemmed On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title_short On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
title_sort on the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
topic Physical Sciences and Engineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802152/
https://www.ncbi.nlm.nih.gov/pubmed/36714862
http://dx.doi.org/10.1093/pnasnexus/pgac154
work_keys_str_mv AT evangelounikolaos ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT wichrowskinoahj ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT kevrekidisgeorgea ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT dietrichfelix ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT kooshkbaghimahdi ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT mcfannsarah ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability
AT kevrekidisioannisg ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability