Cargando…
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802152/ https://www.ncbi.nlm.nih.gov/pubmed/36714862 http://dx.doi.org/10.1093/pnasnexus/pgac154 |
_version_ | 1784861625697697792 |
---|---|
author | Evangelou, Nikolaos Wichrowski, Noah J Kevrekidis, George A Dietrich, Felix Kooshkbaghi, Mahdi McFann, Sarah Kevrekidis, Ioannis G |
author_facet | Evangelou, Nikolaos Wichrowski, Noah J Kevrekidis, George A Dietrich, Felix Kooshkbaghi, Mahdi McFann, Sarah Kevrekidis, Ioannis G |
author_sort | Evangelou, Nikolaos |
collection | PubMed |
description | We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically. |
format | Online Article Text |
id | pubmed-9802152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98021522023-01-26 On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability Evangelou, Nikolaos Wichrowski, Noah J Kevrekidis, George A Dietrich, Felix Kooshkbaghi, Mahdi McFann, Sarah Kevrekidis, Ioannis G PNAS Nexus Physical Sciences and Engineering We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically. Oxford University Press 2022-09-14 /pmc/articles/PMC9802152/ /pubmed/36714862 http://dx.doi.org/10.1093/pnasnexus/pgac154 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Physical Sciences and Engineering Evangelou, Nikolaos Wichrowski, Noah J Kevrekidis, George A Dietrich, Felix Kooshkbaghi, Mahdi McFann, Sarah Kevrekidis, Ioannis G On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title | On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title_full | On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title_fullStr | On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title_full_unstemmed | On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title_short | On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
title_sort | on the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability |
topic | Physical Sciences and Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802152/ https://www.ncbi.nlm.nih.gov/pubmed/36714862 http://dx.doi.org/10.1093/pnasnexus/pgac154 |
work_keys_str_mv | AT evangelounikolaos ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT wichrowskinoahj ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT kevrekidisgeorgea ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT dietrichfelix ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT kooshkbaghimahdi ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT mcfannsarah ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability AT kevrekidisioannisg ontheparametercombinationsthatmatterandonthosethatdonotdatadrivenstudiesofparameternonidentifiability |