Cargando…
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output...
Autores principales: | Evangelou, Nikolaos, Wichrowski, Noah J, Kevrekidis, George A, Dietrich, Felix, Kooshkbaghi, Mahdi, McFann, Sarah, Kevrekidis, Ioannis G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802152/ https://www.ncbi.nlm.nih.gov/pubmed/36714862 http://dx.doi.org/10.1093/pnasnexus/pgac154 |
Ejemplares similares
-
Emergent Spaces for Coupled Oscillators
por: Thiem, Thomas N., et al.
Publicado: (2020) -
A dynamical perspective on the ɸ4 model: past, present and future
por: Kevrekidis, Panayotis, et al.
Publicado: (2019) -
The Sine-Gordon model and its applications: from pendula and Josephson junctions to gravity and high-energy physics
por: Cuevas-Maraver, Jesús, et al.
Publicado: (2014) -
Machine learning-assisted crystal engineering of a zeolite
por: Li, Xinyu, et al.
Publicado: (2023) -
Localized excitations in nonlinear complex systems: current state of the art and future perspectives
por: Carretero-González, Ricardo, et al.
Publicado: (2014)