Cargando…
NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters
Microbial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrometry is an efficient technique to access m...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802219/ https://www.ncbi.nlm.nih.gov/pubmed/36712343 http://dx.doi.org/10.1093/pnasnexus/pgac257 |
_version_ | 1784861637438603264 |
---|---|
author | Leão, Tiago F Wang, Mingxun da Silva, Ricardo Gurevich, Alexey Bauermeister, Anelize Gomes, Paulo Wender P Brejnrod, Asker Glukhov, Evgenia Aron, Allegra T Louwen, Joris J R Kim, Hyun Woo Reher, Raphael Fiore, Marli F van der Hooft, Justin J J Gerwick, Lena Gerwick, William H Bandeira, Nuno Dorrestein, Pieter C |
author_facet | Leão, Tiago F Wang, Mingxun da Silva, Ricardo Gurevich, Alexey Bauermeister, Anelize Gomes, Paulo Wender P Brejnrod, Asker Glukhov, Evgenia Aron, Allegra T Louwen, Joris J R Kim, Hyun Woo Reher, Raphael Fiore, Marli F van der Hooft, Justin J J Gerwick, Lena Gerwick, William H Bandeira, Nuno Dorrestein, Pieter C |
author_sort | Leão, Tiago F |
collection | PubMed |
description | Microbial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrometry is an efficient technique to access metabolites from fractions and even environmental crude extracts. Nevertheless, metabolomics is limited in predicting structures or bioactivities for cryptic metabolites. Efficiently linking the biosynthetic potential inferred from (meta)genomics to the specialized metabolome would accelerate drug discovery programs by allowing metabolomics to make use of genetic predictions. Here, we present a k-nearest neighbor classifier to systematically connect mass spectrometry fragmentation spectra to their corresponding biosynthetic gene clusters (independent of their chemical class). Our new pattern-based genome mining pipeline links biosynthetic genes to metabolites that they encode for, as detected via mass spectrometry from bacterial cultures or environmental microbiomes. Using paired datasets that include validated genes-mass spectral links from the Paired Omics Data Platform, we demonstrate this approach by automatically linking 18 previously known mass spectra (17 for which the biosynthesis gene clusters can be found at the MIBiG database plus palmyramide A) to their corresponding previously experimentally validated biosynthetic genes (e.g., via nuclear magnetic resonance or genetic engineering). We illustrated a computational example of how to use our Natural Products Mixed Omics (NPOmix) tool for siderophore mining that can be reproduced by the users. We conclude that NPOmix minimizes the need for culturing (it worked well on microbiomes) and facilitates specialized metabolite prioritization based on integrative omics mining. |
format | Online Article Text |
id | pubmed-9802219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98022192023-01-26 NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters Leão, Tiago F Wang, Mingxun da Silva, Ricardo Gurevich, Alexey Bauermeister, Anelize Gomes, Paulo Wender P Brejnrod, Asker Glukhov, Evgenia Aron, Allegra T Louwen, Joris J R Kim, Hyun Woo Reher, Raphael Fiore, Marli F van der Hooft, Justin J J Gerwick, Lena Gerwick, William H Bandeira, Nuno Dorrestein, Pieter C PNAS Nexus Biological, Health, and Medical Sciences Microbial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrometry is an efficient technique to access metabolites from fractions and even environmental crude extracts. Nevertheless, metabolomics is limited in predicting structures or bioactivities for cryptic metabolites. Efficiently linking the biosynthetic potential inferred from (meta)genomics to the specialized metabolome would accelerate drug discovery programs by allowing metabolomics to make use of genetic predictions. Here, we present a k-nearest neighbor classifier to systematically connect mass spectrometry fragmentation spectra to their corresponding biosynthetic gene clusters (independent of their chemical class). Our new pattern-based genome mining pipeline links biosynthetic genes to metabolites that they encode for, as detected via mass spectrometry from bacterial cultures or environmental microbiomes. Using paired datasets that include validated genes-mass spectral links from the Paired Omics Data Platform, we demonstrate this approach by automatically linking 18 previously known mass spectra (17 for which the biosynthesis gene clusters can be found at the MIBiG database plus palmyramide A) to their corresponding previously experimentally validated biosynthetic genes (e.g., via nuclear magnetic resonance or genetic engineering). We illustrated a computational example of how to use our Natural Products Mixed Omics (NPOmix) tool for siderophore mining that can be reproduced by the users. We conclude that NPOmix minimizes the need for culturing (it worked well on microbiomes) and facilitates specialized metabolite prioritization based on integrative omics mining. Oxford University Press 2022-11-16 /pmc/articles/PMC9802219/ /pubmed/36712343 http://dx.doi.org/10.1093/pnasnexus/pgac257 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Biological, Health, and Medical Sciences Leão, Tiago F Wang, Mingxun da Silva, Ricardo Gurevich, Alexey Bauermeister, Anelize Gomes, Paulo Wender P Brejnrod, Asker Glukhov, Evgenia Aron, Allegra T Louwen, Joris J R Kim, Hyun Woo Reher, Raphael Fiore, Marli F van der Hooft, Justin J J Gerwick, Lena Gerwick, William H Bandeira, Nuno Dorrestein, Pieter C NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title | NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title_full | NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title_fullStr | NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title_full_unstemmed | NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title_short | NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
title_sort | npomix: a machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters |
topic | Biological, Health, and Medical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802219/ https://www.ncbi.nlm.nih.gov/pubmed/36712343 http://dx.doi.org/10.1093/pnasnexus/pgac257 |
work_keys_str_mv | AT leaotiagof npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT wangmingxun npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT dasilvaricardo npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT gurevichalexey npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT bauermeisteranelize npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT gomespaulowenderp npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT brejnrodasker npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT glukhovevgenia npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT aronallegrat npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT louwenjorisjr npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT kimhyunwoo npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT reherraphael npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT fioremarlif npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT vanderhooftjustinjj npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT gerwicklena npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT gerwickwilliamh npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT bandeiranuno npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters AT dorresteinpieterc npomixamachinelearningclassifiertoconnectmassspectrometryfragmentationdatatobiosyntheticgeneclusters |