Cargando…
Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues
Convolutional neural networks (CNNs) and other deep-learning models have proven to be transformative tools for the automated analysis of microscopy images, particularly in the domain of cellular and tissue imaging. These computer-vision models have primarily been applied with traditional microscopy...
Autores principales: | Smolen, Justin A, Wooley, Karen L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802238/ https://www.ncbi.nlm.nih.gov/pubmed/36712353 http://dx.doi.org/10.1093/pnasnexus/pgac235 |
Ejemplares similares
-
Simple phasor-based deep neural network for fluorescence lifetime imaging microscopy
por: Héliot, Laurent, et al.
Publicado: (2021) -
Single-shot time-folded fluorescence lifetime imaging
por: Kapitany, Valentin, et al.
Publicado: (2023) -
Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks
por: Wei, Kaihua, et al.
Publicado: (2022) -
Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy
por: Lin, Po-Yen, et al.
Publicado: (2010) -
Prediction in cultured cortical neural networks
por: Lamberti, Martina, et al.
Publicado: (2023)