Cargando…
Hiding opinions from machine learning
Recent breakthroughs in machine learning and big data analysis are allowing our online activities to be scrutinized at an unprecedented scale, and our private information to be inferred without our consent or knowledge. Here, we focus on algorithms designed to infer the opinions of Twitter users tow...
Autores principales: | Waniek, Marcin, Magdy, Walid, Rahwan, Talal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802261/ https://www.ncbi.nlm.nih.gov/pubmed/36712321 http://dx.doi.org/10.1093/pnasnexus/pgac256 |
Ejemplares similares
-
How to Hide One’s Relationships from Link Prediction Algorithms
por: Waniek, Marcin, et al.
Publicado: (2019) -
Social diffusion sources can escape detection
por: Waniek, Marcin, et al.
Publicado: (2022) -
YouTube’s recommendation algorithm is left-leaning in the United States
por: Ibrahim, Hazem, et al.
Publicado: (2023) -
Human intuition as a defense against attribute inference
por: Waniek, Marcin, et al.
Publicado: (2023) -
Trading contact tracing efficiency for finding patient zero
por: Waniek, Marcin, et al.
Publicado: (2022)