Cargando…
Evolutionary instability of selfish learning in repeated games
Across many domains of interaction, both natural and artificial, individuals use past experience to shape future behaviors. The results of such learning processes depend on what individuals wish to maximize. A natural objective is one’s own success. However, when two such “selfish” learners interact...
Autores principales: | McAvoy, Alex, Kates-Harbeck, Julian, Chatterjee, Krishnendu, Hilbe, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802390/ https://www.ncbi.nlm.nih.gov/pubmed/36714856 http://dx.doi.org/10.1093/pnasnexus/pgac141 |
Ejemplares similares
-
Asymmetric Evolutionary Games
por: McAvoy, Alex, et al.
Publicado: (2015) -
Evaluating the structure-coefficient theorem of evolutionary game theory
por: McAvoy, Alex, et al.
Publicado: (2022) -
Evolutionary dynamics with game transitions
por: Su, Qi, et al.
Publicado: (2019) -
Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness
por: Reiter, Johannes G., et al.
Publicado: (2018) -
The Moran process on 2-chromatic graphs
por: Kaveh, Kamran, et al.
Publicado: (2020)