Cargando…
Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings
The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802636/ https://www.ncbi.nlm.nih.gov/pubmed/36589103 http://dx.doi.org/10.3389/fpls.2022.994555 |
_version_ | 1784861718230335488 |
---|---|
author | Masuda, Kosaku Yamada, Tatsuya Kagawa, Yuya Fukuda, Hirokazu |
author_facet | Masuda, Kosaku Yamada, Tatsuya Kagawa, Yuya Fukuda, Hirokazu |
author_sort | Masuda, Kosaku |
collection | PubMed |
description | The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recent study demonstrated that the effect of time lags between light and temperature cycles on plant growth could be predicted by the entrainment properties of the circadian clock in Arabidopsis thaliana. Based on this prediction, it was possible to control plant growth by adjusting the time lag. However, for application in plant factories, it is necessary to verify the effectiveness of this method using commercial vegetables, such as leaf lettuce. In this study, we investigated the entrainment properties of the circadian clock and the effect of the time lag between light and temperature cycles on circadian rhythms and plant growth in Lactuca sativa L. seedlings. For evaluation of circadian rhythms, we used transgenic L. sativa L. with a luciferase reporter in the experiment and a phase oscillator model in the simulation. We found that the entrainment properties for the light and temperature stimuli and the effects of time lags on circadian rhythm and growth were similar to those of A. thaliana. Moreover, we demonstrated that changes in growth under different time lags could be predicted by simulation based on the entrainment properties of the circadian clock. These results showed the importance of designing a cultivation environment that considers the circadian clock and demonstrated a series of methods to achieve this. |
format | Online Article Text |
id | pubmed-9802636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98026362022-12-31 Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings Masuda, Kosaku Yamada, Tatsuya Kagawa, Yuya Fukuda, Hirokazu Front Plant Sci Plant Science The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recent study demonstrated that the effect of time lags between light and temperature cycles on plant growth could be predicted by the entrainment properties of the circadian clock in Arabidopsis thaliana. Based on this prediction, it was possible to control plant growth by adjusting the time lag. However, for application in plant factories, it is necessary to verify the effectiveness of this method using commercial vegetables, such as leaf lettuce. In this study, we investigated the entrainment properties of the circadian clock and the effect of the time lag between light and temperature cycles on circadian rhythms and plant growth in Lactuca sativa L. seedlings. For evaluation of circadian rhythms, we used transgenic L. sativa L. with a luciferase reporter in the experiment and a phase oscillator model in the simulation. We found that the entrainment properties for the light and temperature stimuli and the effects of time lags on circadian rhythm and growth were similar to those of A. thaliana. Moreover, we demonstrated that changes in growth under different time lags could be predicted by simulation based on the entrainment properties of the circadian clock. These results showed the importance of designing a cultivation environment that considers the circadian clock and demonstrated a series of methods to achieve this. Frontiers Media S.A. 2022-10-13 /pmc/articles/PMC9802636/ /pubmed/36589103 http://dx.doi.org/10.3389/fpls.2022.994555 Text en Copyright © 2022 Masuda, Yamada, Kagawa and Fukuda https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Masuda, Kosaku Yamada, Tatsuya Kagawa, Yuya Fukuda, Hirokazu Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title | Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title_full | Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title_fullStr | Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title_full_unstemmed | Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title_short | Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings |
title_sort | application of time lags between light and temperature cycles for growth control based on the circadian clock of lactuca sativa l. seedlings |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802636/ https://www.ncbi.nlm.nih.gov/pubmed/36589103 http://dx.doi.org/10.3389/fpls.2022.994555 |
work_keys_str_mv | AT masudakosaku applicationoftimelagsbetweenlightandtemperaturecyclesforgrowthcontrolbasedonthecircadianclockoflactucasativalseedlings AT yamadatatsuya applicationoftimelagsbetweenlightandtemperaturecyclesforgrowthcontrolbasedonthecircadianclockoflactucasativalseedlings AT kagawayuya applicationoftimelagsbetweenlightandtemperaturecyclesforgrowthcontrolbasedonthecircadianclockoflactucasativalseedlings AT fukudahirokazu applicationoftimelagsbetweenlightandtemperaturecyclesforgrowthcontrolbasedonthecircadianclockoflactucasativalseedlings |