Cargando…
Implementation of a cylindrical distribution function for the analysis of anisotropic molecular dynamics simulations
The cylindrical distribution function (CDF) is a convenient anisotropic analogue of the radial distribution function, the difference being the use of cylindrical shells for binning. As such, CDF analysis can be a powerful tool for the analysis of positional correlations within anisotropic systems, s...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803122/ https://www.ncbi.nlm.nih.gov/pubmed/36584026 http://dx.doi.org/10.1371/journal.pone.0279679 |
Sumario: | The cylindrical distribution function (CDF) is a convenient anisotropic analogue of the radial distribution function, the difference being the use of cylindrical shells for binning. As such, CDF analysis can be a powerful tool for the analysis of positional correlations within anisotropic systems, such as liquid crystals. Here we describe a lightweight Python tool, cylindr, for the calculation of cylindrical distribution function, which is compatible with the output of a number of popular MD engines. We demonstrate the use of cylindr in computing the CDF of a number of exemplar materials: classical and ferroelectric nematics; lamellar and columnar liquid crystals. |
---|