Cargando…

IVABRADINE-INDUCED HEART RATE REDUCTION INCREASES THE SEVERITY OF POSTRESUSCITATION MYOCARDIAL DYSFUNCTION IN A RAT MODEL OF CARDIOPULMONARY RESUSCITATION

Aims: A rapid heart rate (HR) that occurs after cardiopulmonary resuscitation (CPR) is a short-term compensatory mechanism preserving cardiac output. However, if of long duration, it is unfavorable for myocardial function postresuscitation because of disrupted balance between myocardial oxygen suppl...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Zhangle, Gao, Shan, Yang, Jin, Xu, Banglong, Tang, Wanchun, Bradley, Jennifer L., Peberdy, Mary Ann, Ornato, Joseph P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803391/
https://www.ncbi.nlm.nih.gov/pubmed/36548647
http://dx.doi.org/10.1097/SHK.0000000000002020
Descripción
Sumario:Aims: A rapid heart rate (HR) that occurs after cardiopulmonary resuscitation (CPR) is a short-term compensatory mechanism preserving cardiac output. However, if of long duration, it is unfavorable for myocardial function postresuscitation because of disrupted balance between myocardial oxygen supply and demand. This raises the assumption that such a sustained fast HR should be regulated. The present study aimed to investigate the follow-on effect of ivabradine (a specific inhibitor of the I(f) current of the sinoatrial node)–induced HR reduction (HRR) on postresuscitation myocardial function in a rat model of CPR. Methods and results: Six minutes of ventricular fibrillation and 8 min of CPR were performed on Sprague-Dawley rats. All 32 resuscitated animals were then randomized into saline and ivabradine groups, each group having nonsurvival and survival subgroups (n = 8 each). Saline or ivabradine (0.5 mL/kg) was administered at 1 h postresuscitation. Heart rate, myocardial function as expressed by cardiac output, ejection fraction, and myocardial performance index were assessed at baseline and hourly from 1 to 5 h postresuscitation. Heart rate variability was analyzed at baseline and at 1, 3, and 5 h postresuscitation. Serum epinephrine and cardiac troponin I at baseline and at 1, 3, and 5 h postresuscitation in nonsurvival subgroup were measured. Survival duration in the survival subgroup was observed. The baseline HR was approximately 390 beats/min (bpm). After resuscitation, an average increase of Δ ≈ +15 bpm (relative ratio ≈ +3.8%) with a resultant HR of 405 bpm lasting more than 5 h occurred. Ivabradine group achieved a steady HRR of Δ ≈ −30 bpm (relative ratio ≈ −7.4%) as compared with saline group (P < 0.01). Postresuscitation myocardial function was significantly worse in the ivabradine group (all P < 0.01). Heart rate variability was significantly impaired in the ivabradine group (all P < 0.05). Serum cardiac troponin I and epinephrine concentration were significantly higher in the ivabradine group (all P < ?0.01). Survival duration was significantly shortened in the ivabradine group as compared with the saline group (388 vs. 526 min, P < ?0.01). Conclusions: Ivabradine-induced HRR increases the severity of postresuscitation myocardial dysfunction and shortens survival duration in a rat model of CPR.