Cargando…
Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis
Spine trauma, vertebral metastases, and osteoporosis (SVO) can result in serious health problems. If the diagnosis of SVO is delayed, the prognosis may be deteriorated. The use of artificial intelligence (AI) is an essential method for minimizing the diagnostic errors associated with SVO. research a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803480/ https://www.ncbi.nlm.nih.gov/pubmed/36596060 http://dx.doi.org/10.1097/MD.0000000000032369 |
_version_ | 1784861895385153536 |
---|---|
author | Huang, Yu-Po Pao, Jwo-Luen Chien, Tsair-Wei Lin, Jui-Chung John Chou, Po-Hsin |
author_facet | Huang, Yu-Po Pao, Jwo-Luen Chien, Tsair-Wei Lin, Jui-Chung John Chou, Po-Hsin |
author_sort | Huang, Yu-Po |
collection | PubMed |
description | Spine trauma, vertebral metastases, and osteoporosis (SVO) can result in serious health problems. If the diagnosis of SVO is delayed, the prognosis may be deteriorated. The use of artificial intelligence (AI) is an essential method for minimizing the diagnostic errors associated with SVO. research achievements (RAs) of SVO on AI are required as a result of the greatest number of studies on AI solutions reported. The study aimed to: classify article themes using visualizations, illustrate the characteristics of SVO on AI recently, compare RAs of SVO on AI between entities (e.g., countries, institutes, departments, and authors), and determine whether the mean citations of keywords can be used to predict article citations. METHODS: A total of 31 articles from SVO on AI (denoted by T31SVOAI) have been found in Web of Science since 2018. The dominant entities were analyzed using the CJAL score and the Y-index. Five visualizations were applied to report: the themes of T31SVOAI and their RAs in comparison for article entities and verification of the hypothesis that the mean citations of keywords can predict article citations, including: network diagrams, chord diagrams, dot plots, a Kano diagram, and radar plots. RESULTS: There were five themes classified (osteoporosis, personalized medicine, fracture, deformity, and cervical spine) by a chord diagram. The dominant entities with the highest CJAL scores were the United States (22.05), the University of Pennsylvania (5.72), Radiology (6.12), and Nithin Kolanu (Australia) (9.88). The majority of articles were published in Bone, J. Bone Miner. Res., and Arch. Osteoporos., with an equal count (=3). There was a significant correlation between the number of article citations and the number of weighted keywords (F = 392.05; P < .0001). CONCLUSION: A breakthrough was achieved by displaying the characteristics of T31SVOAI using the CJAL score, the Y-index, and the chord diagram. Weighted keywords can be used to predict article citations. The five visualizations employed in this study may be used in future bibliographical studies. |
format | Online Article Text |
id | pubmed-9803480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-98034802023-01-03 Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis Huang, Yu-Po Pao, Jwo-Luen Chien, Tsair-Wei Lin, Jui-Chung John Chou, Po-Hsin Medicine (Baltimore) 7100 Spine trauma, vertebral metastases, and osteoporosis (SVO) can result in serious health problems. If the diagnosis of SVO is delayed, the prognosis may be deteriorated. The use of artificial intelligence (AI) is an essential method for minimizing the diagnostic errors associated with SVO. research achievements (RAs) of SVO on AI are required as a result of the greatest number of studies on AI solutions reported. The study aimed to: classify article themes using visualizations, illustrate the characteristics of SVO on AI recently, compare RAs of SVO on AI between entities (e.g., countries, institutes, departments, and authors), and determine whether the mean citations of keywords can be used to predict article citations. METHODS: A total of 31 articles from SVO on AI (denoted by T31SVOAI) have been found in Web of Science since 2018. The dominant entities were analyzed using the CJAL score and the Y-index. Five visualizations were applied to report: the themes of T31SVOAI and their RAs in comparison for article entities and verification of the hypothesis that the mean citations of keywords can predict article citations, including: network diagrams, chord diagrams, dot plots, a Kano diagram, and radar plots. RESULTS: There were five themes classified (osteoporosis, personalized medicine, fracture, deformity, and cervical spine) by a chord diagram. The dominant entities with the highest CJAL scores were the United States (22.05), the University of Pennsylvania (5.72), Radiology (6.12), and Nithin Kolanu (Australia) (9.88). The majority of articles were published in Bone, J. Bone Miner. Res., and Arch. Osteoporos., with an equal count (=3). There was a significant correlation between the number of article citations and the number of weighted keywords (F = 392.05; P < .0001). CONCLUSION: A breakthrough was achieved by displaying the characteristics of T31SVOAI using the CJAL score, the Y-index, and the chord diagram. Weighted keywords can be used to predict article citations. The five visualizations employed in this study may be used in future bibliographical studies. Lippincott Williams & Wilkins 2022-12-30 /pmc/articles/PMC9803480/ /pubmed/36596060 http://dx.doi.org/10.1097/MD.0000000000032369 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. |
spellingShingle | 7100 Huang, Yu-Po Pao, Jwo-Luen Chien, Tsair-Wei Lin, Jui-Chung John Chou, Po-Hsin Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title | Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title_full | Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title_fullStr | Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title_full_unstemmed | Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title_short | Thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: A systematic review and meta-analysis |
title_sort | thematic analysis of articles on artificial intelligence with spine trauma, vertebral metastasis, and osteoporosis using chord diagrams: a systematic review and meta-analysis |
topic | 7100 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803480/ https://www.ncbi.nlm.nih.gov/pubmed/36596060 http://dx.doi.org/10.1097/MD.0000000000032369 |
work_keys_str_mv | AT huangyupo thematicanalysisofarticlesonartificialintelligencewithspinetraumavertebralmetastasisandosteoporosisusingchorddiagramsasystematicreviewandmetaanalysis AT paojwoluen thematicanalysisofarticlesonartificialintelligencewithspinetraumavertebralmetastasisandosteoporosisusingchorddiagramsasystematicreviewandmetaanalysis AT chientsairwei thematicanalysisofarticlesonartificialintelligencewithspinetraumavertebralmetastasisandosteoporosisusingchorddiagramsasystematicreviewandmetaanalysis AT linjuichungjohn thematicanalysisofarticlesonartificialintelligencewithspinetraumavertebralmetastasisandosteoporosisusingchorddiagramsasystematicreviewandmetaanalysis AT choupohsin thematicanalysisofarticlesonartificialintelligencewithspinetraumavertebralmetastasisandosteoporosisusingchorddiagramsasystematicreviewandmetaanalysis |