Cargando…
Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran
BACKGROUND: The high number of COVID-19 deaths is a serious threat to the world. Demographic and clinical biomarkers are significantly associated with the mortality risk of this disease. This study aimed to implement Generalized Neural Additive Model (GNAM) as an interpretable machine learning metho...
Autores principales: | Moslehi, Samad, Mahjub, Hossein, Farhadian, Maryam, Soltanian, Ali Reza, Mamani, Mojgan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803600/ https://www.ncbi.nlm.nih.gov/pubmed/36585627 http://dx.doi.org/10.1186/s12874-022-01827-y |
Ejemplares similares
-
Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran
por: Moslehi, Samad, et al.
Publicado: (2022) -
Seroprevalence of Hepatitis E Among Hemodialysis Patients: A Report From Hamadan, Iran
por: Eini, Peyman, et al.
Publicado: (2015) -
Seroprevalence of Brucellosis in Butchers, Veterinarians and Slaughterhouse Workers in Hamadan, Western Iran
por: Mamani, Mojgan, et al.
Publicado: (2018) -
Predictors of COVID-19 Mortality in Hemodialysis Patients, Hamadan Province, Iran
por: Jalili, Ebrahim, et al.
Publicado: (2022) -
Identifying the Risk Factors for Mortality in Patients with Cancer and COVID-19 in Hamadan, the West of Iran
por: Safari, Malihe, et al.
Publicado: (2021)