Cargando…

Rational ligand modification maximizes turnover rate in a model Pd-catalyzed C-H arylation

The direct cross-coupling of (hetero)aromatics without prior functionalization is a promising reaction for the chemical and pharmaceutical industries, enabling the conversion of inexpensive feedstocks in a highly step-efficient manner. However, many C-H arylations rely on high loadings of a Pd catal...

Descripción completa

Detalles Bibliográficos
Autores principales: Beckers, Igor, De Vos, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803853/
https://www.ncbi.nlm.nih.gov/pubmed/36594021
http://dx.doi.org/10.1016/j.isci.2022.105790
Descripción
Sumario:The direct cross-coupling of (hetero)aromatics without prior functionalization is a promising reaction for the chemical and pharmaceutical industries, enabling the conversion of inexpensive feedstocks in a highly step-efficient manner. However, many C-H arylations rely on high loadings of a Pd catalyst that preclude their use in low-cost applications. In this work, we have maximized the turnover rate of a Pd-catalyzed C-H arylation reaction through rational tuning of the ligands. Starting from a computational study of the catalytic mechanism, a kinetic model was derived that accurately explains the experimental time profiles. Quantitative structure-activity relationships between the substituents on the ligands and the resulting catalytic activity for various C-H arylations were obtained. This study demonstrates that, depending on the coupling partner, the C-H activation is not the sole rate-limiting step, and that the ligands can be adapted accordingly to further accelerate catalytic turnover.