Cargando…
Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions
The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803954/ https://www.ncbi.nlm.nih.gov/pubmed/36571883 http://dx.doi.org/10.1016/j.ultsonch.2022.106277 |
_version_ | 1784861998312325120 |
---|---|
author | Sadeghian, Seyede Farnaz Majdinasab, Marjan Nejadmansouri, Maryam Hosseini, Seyed Mohammad Hashem |
author_facet | Sadeghian, Seyede Farnaz Majdinasab, Marjan Nejadmansouri, Maryam Hosseini, Seyed Mohammad Hashem |
author_sort | Sadeghian, Seyede Farnaz |
collection | PubMed |
description | The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages. |
format | Online Article Text |
id | pubmed-9803954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98039542023-01-01 Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions Sadeghian, Seyede Farnaz Majdinasab, Marjan Nejadmansouri, Maryam Hosseini, Seyed Mohammad Hashem Ultrason Sonochem Original Research Article The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages. Elsevier 2022-12-23 /pmc/articles/PMC9803954/ /pubmed/36571883 http://dx.doi.org/10.1016/j.ultsonch.2022.106277 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Sadeghian, Seyede Farnaz Majdinasab, Marjan Nejadmansouri, Maryam Hosseini, Seyed Mohammad Hashem Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title | Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title_full | Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title_fullStr | Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title_full_unstemmed | Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title_short | Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
title_sort | effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803954/ https://www.ncbi.nlm.nih.gov/pubmed/36571883 http://dx.doi.org/10.1016/j.ultsonch.2022.106277 |
work_keys_str_mv | AT sadeghianseyedefarnaz effectsofnaturalantioxidantsandhighenergyfabricationmethodsonphysicalpropertiesandoxidativestabilityofflaxseedoilinwaternanoemulsions AT majdinasabmarjan effectsofnaturalantioxidantsandhighenergyfabricationmethodsonphysicalpropertiesandoxidativestabilityofflaxseedoilinwaternanoemulsions AT nejadmansourimaryam effectsofnaturalantioxidantsandhighenergyfabricationmethodsonphysicalpropertiesandoxidativestabilityofflaxseedoilinwaternanoemulsions AT hosseiniseyedmohammadhashem effectsofnaturalantioxidantsandhighenergyfabricationmethodsonphysicalpropertiesandoxidativestabilityofflaxseedoilinwaternanoemulsions |