Cargando…
Implementation of Machine Learning Pipelines for Clinical Practice: Development and Validation Study
BACKGROUND: Artificial intelligence (AI) technologies, such as machine learning and natural language processing, have the potential to provide new insights into complex health data. Although powerful, these algorithms rarely move from experimental studies to direct clinical care implementation. OBJE...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804095/ https://www.ncbi.nlm.nih.gov/pubmed/36525289 http://dx.doi.org/10.2196/37833 |
Sumario: | BACKGROUND: Artificial intelligence (AI) technologies, such as machine learning and natural language processing, have the potential to provide new insights into complex health data. Although powerful, these algorithms rarely move from experimental studies to direct clinical care implementation. OBJECTIVE: We aimed to describe the key components for successful development and integration of two AI technology–based research pipelines for clinical practice. METHODS: We summarized the approach, results, and key learnings from the implementation of the following two systems implemented at a large, tertiary care children’s hospital: (1) epilepsy surgical candidate identification (or epilepsy ID) in an ambulatory neurology clinic; and (2) an automated clinical trial eligibility screener (ACTES) for the real-time identification of patients for research studies in a pediatric emergency department. RESULTS: The epilepsy ID system performed as well as board-certified neurologists in identifying surgical candidates (with a sensitivity of 71% and positive predictive value of 77%). The ACTES system decreased coordinator screening time by 12.9%. The success of each project was largely dependent upon the collaboration between machine learning experts, research and operational information technology professionals, longitudinal support from clinical providers, and institutional leadership. CONCLUSIONS: These projects showcase novel interactions between machine learning recommendations and providers during clinical care. Our deployment provides seamless, real-time integration of AI technology to provide decision support and improve patient care. |
---|