Cargando…
Synthesize heterogeneous biological knowledge via representation learning for Alzheimer’s disease drug repurposing
Developing drugs for treating Alzheimer’s disease has been extremely challenging and costly due to limited knowledge of underlying mechanisms and therapeutic targets. To address the challenge in AD drug development, we developed a multi-task deep learning pipeline that learns biological interactions...
Autores principales: | Hsieh, Kang-Lin, Plascencia-Villa, German, Lin, Ko-Hong, Perry, George, Jiang, Xiaoqian, Kim, Yejin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804117/ https://www.ncbi.nlm.nih.gov/pubmed/36594024 http://dx.doi.org/10.1016/j.isci.2022.105678 |
Ejemplares similares
-
Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer’s Disease
por: Plascencia-Villa, Germán, et al.
Publicado: (2023) -
Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases
por: Plascencia-Villa, Germán, et al.
Publicado: (2023) -
Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence
por: Hsieh, Kanglin, et al.
Publicado: (2021) -
Drug Repurposing for COVID-19 using Graph Neural Network with Genetic, Mechanistic, and Epidemiological Validation
por: Hsieh, Kanglin, et al.
Publicado: (2020) -
Repurposing of Tibolone in Alzheimer’s Disease
por: Barreto, George E.
Publicado: (2023)