Cargando…

Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine

Melamine is a precursor and building block for graphitic carbon nitride (g‐CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g‐CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Vosegaard, Emilie S., Thomsen, Maja K., Krause, Lennard, Grønbech, Thomas B. E., Mamakhel, Aref, Takahashi, Seiya, Nishibori, Eiji, Iversen, Bo B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804335/
https://www.ncbi.nlm.nih.gov/pubmed/35760733
http://dx.doi.org/10.1002/chem.202201295
_version_ 1784862084166582272
author Vosegaard, Emilie S.
Thomsen, Maja K.
Krause, Lennard
Grønbech, Thomas B. E.
Mamakhel, Aref
Takahashi, Seiya
Nishibori, Eiji
Iversen, Bo B.
author_facet Vosegaard, Emilie S.
Thomsen, Maja K.
Krause, Lennard
Grønbech, Thomas B. E.
Mamakhel, Aref
Takahashi, Seiya
Nishibori, Eiji
Iversen, Bo B.
author_sort Vosegaard, Emilie S.
collection PubMed
description Melamine is a precursor and building block for graphitic carbon nitride (g‐CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g‐CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the crystal organize into wave‐like planes with an interlayer distance of 3.3 Å similar to that of g‐CN. Here we present an extensive investigation of the experimental electron density of melamine obtained from modelling of synchrotron radiation X‐ray single‐crystal diffraction data measured at 25 K with special focus on the molecular geometry and intermolecular interactions. Both intra‐ and interlayer structures are dominated by hydrogen bonding and π‐interactions. Theoretical gas‐phase optimizations of the experimental molecular geometry show that bond lengths and angles for atoms in the same chemical environment (C−N bonds in the ring, amine groups) differ significantly more for the experimental geometry than for the gas‐phase‐optimized geometries, indicating that intermolecular interactions in the crystal affects the molecular geometry. In the experimental crystal geometry, one amine group has significantly more sp(3)‐like character than the others, hinting at a possible formation mechanism of g‐CN. Topological analysis and energy frameworks show that the nitrogen atom in this amine group participates in weak intralayer hydrogen bonding. We hypothesize that melamine condenses to g‐CN within the layers and that the unique amine group plays a key role in the condensation process.
format Online
Article
Text
id pubmed-9804335
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-98043352023-01-03 Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine Vosegaard, Emilie S. Thomsen, Maja K. Krause, Lennard Grønbech, Thomas B. E. Mamakhel, Aref Takahashi, Seiya Nishibori, Eiji Iversen, Bo B. Chemistry Research Articles Melamine is a precursor and building block for graphitic carbon nitride (g‐CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g‐CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the crystal organize into wave‐like planes with an interlayer distance of 3.3 Å similar to that of g‐CN. Here we present an extensive investigation of the experimental electron density of melamine obtained from modelling of synchrotron radiation X‐ray single‐crystal diffraction data measured at 25 K with special focus on the molecular geometry and intermolecular interactions. Both intra‐ and interlayer structures are dominated by hydrogen bonding and π‐interactions. Theoretical gas‐phase optimizations of the experimental molecular geometry show that bond lengths and angles for atoms in the same chemical environment (C−N bonds in the ring, amine groups) differ significantly more for the experimental geometry than for the gas‐phase‐optimized geometries, indicating that intermolecular interactions in the crystal affects the molecular geometry. In the experimental crystal geometry, one amine group has significantly more sp(3)‐like character than the others, hinting at a possible formation mechanism of g‐CN. Topological analysis and energy frameworks show that the nitrogen atom in this amine group participates in weak intralayer hydrogen bonding. We hypothesize that melamine condenses to g‐CN within the layers and that the unique amine group plays a key role in the condensation process. John Wiley and Sons Inc. 2022-08-03 2022-09-27 /pmc/articles/PMC9804335/ /pubmed/35760733 http://dx.doi.org/10.1002/chem.202201295 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Vosegaard, Emilie S.
Thomsen, Maja K.
Krause, Lennard
Grønbech, Thomas B. E.
Mamakhel, Aref
Takahashi, Seiya
Nishibori, Eiji
Iversen, Bo B.
Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title_full Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title_fullStr Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title_full_unstemmed Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title_short Synchrotron X‐ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
title_sort synchrotron x‐ray electron density analysis of chemical bonding in the graphitic carbon nitride precursor melamine
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804335/
https://www.ncbi.nlm.nih.gov/pubmed/35760733
http://dx.doi.org/10.1002/chem.202201295
work_keys_str_mv AT vosegaardemilies synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT thomsenmajak synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT krauselennard synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT grønbechthomasbe synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT mamakhelaref synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT takahashiseiya synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT nishiborieiji synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine
AT iversenbob synchrotronxrayelectrondensityanalysisofchemicalbondinginthegraphiticcarbonnitrideprecursormelamine