Cargando…
Machine learning to predict adverse outcomes after cardiac surgery: A systematic review and meta‐analysis
BACKGROUND: Machine learning (ML) models are promising tools for predicting adverse postoperative outcomes in cardiac surgery, yet have not translated to routine clinical use. We conducted a systematic review and meta‐analysis to assess the predictive performance of ML approaches. METHODS: We conduc...
Autores principales: | Penny‐Dimri, Jahan C., Bergmeir, Christoph, Perry, Luke, Hayes, Linley, Bellomo, Rinaldo, Smith, Julian A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804388/ https://www.ncbi.nlm.nih.gov/pubmed/36001761 http://dx.doi.org/10.1111/jocs.16842 |
Ejemplares similares
-
Tree-based survival analysis improves mortality prediction in cardiac surgery
por: Penny-Dimri, Jahan C., et al.
Publicado: (2023) -
Paying attention to cardiac surgical risk: An interpretable machine learning approach using an uncertainty-aware attentive neural network
por: Penny-Dimri, Jahan C., et al.
Publicado: (2023) -
Donor Cardiac Troponin for Prognosis of Adverse Outcomes in Cardiac Transplantation Recipients: a Systematic Review and Meta-analysis
por: Liu, Zhengyang, et al.
Publicado: (2021) -
The prognostic significance of postoperative hyperbilirubinemia in cardiac surgery: systematic review and meta-analysis
por: Raveendran, Dev, et al.
Publicado: (2022) -
The prognostic value of elevated neutrophil–lymphocyte ratio for cardiac surgery‐associated acute kidney injury: A systematic review and meta‐analysis
por: Wheatley, Joseph, et al.
Publicado: (2022)