Cargando…

Aggregation‐Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl‐Based Cyclophanes

Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium‐based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE com...

Descripción completa

Detalles Bibliográficos
Autores principales: Garci, Amine, Abid, Seifallah, David, Arthur H. G., Codesal, Marcos D., Đorđević, Luka, Young, Ryan M., Sai, Hiroaki, Le Bras, Laura, Perrier, Aurélie, Ovalle, Marco, Brown, Paige J., Stern, Charlotte L., Campaña, Araceli G., Stupp, Samuel I., Wasielewski, Michael R., Blanco, Victor, Stoddart, J. Fraser
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804443/
https://www.ncbi.nlm.nih.gov/pubmed/35904930
http://dx.doi.org/10.1002/anie.202208679
Descripción
Sumario:Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium‐based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time‐resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine‐tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio‐applications.