Cargando…

Spirotetramat resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its association with the presence of the A2666V mutation

BACKGROUND: Chemicals are widely used to protect field crops against aphid pests and aphid‐borne viral diseases. One such species is Myzus persicae (Sulzer), a global pest that attacks a broad array of agricultural crops and transmits many economically damaging plant viruses. This species has evolve...

Descripción completa

Detalles Bibliográficos
Autores principales: Umina, Paul A., Bass, Chris, van Rooyen, Anthony, Chirgwin, Evatt, Arthur, Aston L., Pym, Adam, Mackisack, Jo, Mathews, Andrew, Kirkland, Lisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804573/
https://www.ncbi.nlm.nih.gov/pubmed/35900771
http://dx.doi.org/10.1002/ps.7103
Descripción
Sumario:BACKGROUND: Chemicals are widely used to protect field crops against aphid pests and aphid‐borne viral diseases. One such species is Myzus persicae (Sulzer), a global pest that attacks a broad array of agricultural crops and transmits many economically damaging plant viruses. This species has evolved resistance to a large number of insecticide compounds as a result of widespread and repeated chemical use in many parts of the world. In this study, we investigated the evolution of resistance to a new plant protection product, spirotetramat, following reported chemical control failures. RESULTS: Our study provides clear phenotypic and genotypic evidence of spirotetramat resistance in populations of M. persicae from Australia. We show there is cross‐resistance to other insecticides within the same chemical group, namely spiromesifen and spirodiclofen. We also demonstrate that resistance is associated with the previously reported mutation, A2226V in the target site of spirotetramat, acetyl‐CoA carboxylase. Our genetic analysis found all resistant M. persicae populations belong to the same multi‐locus clonal type and carry the A2226V mutation, which appears to be inherited as a dominant trait in this species. CONCLUSION: Our findings provide new insight into the resistance conferred by A2226V and have implications for the control of M. persicae in Australia and worldwide. A diagnostic assay developed in this study should serve as a valuable tool for future resistance monitoring and to support the implementation of pest management strategies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.