Cargando…
Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpm...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804653/ https://www.ncbi.nlm.nih.gov/pubmed/35862259 http://dx.doi.org/10.1002/chem.202201858 |
_version_ | 1784862158870282240 |
---|---|
author | Moll, Johannes Naumann, Robert Sorge, Lukas Förster, Christoph Gessner, Niklas Burkhardt, Lukas Ugur, Naz Nuernberger, Patrick Seidel, Wolfram Ramanan, Charusheela Bauer, Matthias Heinze, Katja |
author_facet | Moll, Johannes Naumann, Robert Sorge, Lukas Förster, Christoph Gessner, Niklas Burkhardt, Lukas Ugur, Naz Nuernberger, Patrick Seidel, Wolfram Ramanan, Charusheela Bauer, Matthias Heinze, Katja |
author_sort | Moll, Johannes |
collection | PubMed |
description | Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpmp)(ddpd)](2+) (2(2+) ) with the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐di‐pyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal‐ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six‐membered chelate rings. The push‐pull ligand cpmp provides intra‐ligand and ligand‐to‐ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 1(2+) and 2(2+) were accessed by X‐ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X‐ray emission spectroscopy, static and time‐resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations. |
format | Online Article Text |
id | pubmed-9804653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98046532023-01-06 Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry Moll, Johannes Naumann, Robert Sorge, Lukas Förster, Christoph Gessner, Niklas Burkhardt, Lukas Ugur, Naz Nuernberger, Patrick Seidel, Wolfram Ramanan, Charusheela Bauer, Matthias Heinze, Katja Chemistry Research Articles Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpmp)(ddpd)](2+) (2(2+) ) with the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐di‐pyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal‐ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six‐membered chelate rings. The push‐pull ligand cpmp provides intra‐ligand and ligand‐to‐ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 1(2+) and 2(2+) were accessed by X‐ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X‐ray emission spectroscopy, static and time‐resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations. John Wiley and Sons Inc. 2022-08-10 2022-10-12 /pmc/articles/PMC9804653/ /pubmed/35862259 http://dx.doi.org/10.1002/chem.202201858 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Moll, Johannes Naumann, Robert Sorge, Lukas Förster, Christoph Gessner, Niklas Burkhardt, Lukas Ugur, Naz Nuernberger, Patrick Seidel, Wolfram Ramanan, Charusheela Bauer, Matthias Heinze, Katja Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title | Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title_full | Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title_fullStr | Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title_full_unstemmed | Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title_short | Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry |
title_sort | pseudo‐octahedral iron(ii) complexes with near‐degenerate charge transfer and ligand field states at the franck‐condon geometry |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804653/ https://www.ncbi.nlm.nih.gov/pubmed/35862259 http://dx.doi.org/10.1002/chem.202201858 |
work_keys_str_mv | AT molljohannes pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT naumannrobert pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT sorgelukas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT forsterchristoph pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT gessnerniklas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT burkhardtlukas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT ugurnaz pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT nuernbergerpatrick pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT seidelwolfram pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT ramanancharusheela pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT bauermatthias pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry AT heinzekatja pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry |