Cargando…

Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry

Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpm...

Descripción completa

Detalles Bibliográficos
Autores principales: Moll, Johannes, Naumann, Robert, Sorge, Lukas, Förster, Christoph, Gessner, Niklas, Burkhardt, Lukas, Ugur, Naz, Nuernberger, Patrick, Seidel, Wolfram, Ramanan, Charusheela, Bauer, Matthias, Heinze, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804653/
https://www.ncbi.nlm.nih.gov/pubmed/35862259
http://dx.doi.org/10.1002/chem.202201858
_version_ 1784862158870282240
author Moll, Johannes
Naumann, Robert
Sorge, Lukas
Förster, Christoph
Gessner, Niklas
Burkhardt, Lukas
Ugur, Naz
Nuernberger, Patrick
Seidel, Wolfram
Ramanan, Charusheela
Bauer, Matthias
Heinze, Katja
author_facet Moll, Johannes
Naumann, Robert
Sorge, Lukas
Förster, Christoph
Gessner, Niklas
Burkhardt, Lukas
Ugur, Naz
Nuernberger, Patrick
Seidel, Wolfram
Ramanan, Charusheela
Bauer, Matthias
Heinze, Katja
author_sort Moll, Johannes
collection PubMed
description Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpmp)(ddpd)](2+) (2(2+) ) with the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐di‐pyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal‐ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six‐membered chelate rings. The push‐pull ligand cpmp provides intra‐ligand and ligand‐to‐ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 1(2+) and 2(2+) were accessed by X‐ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X‐ray emission spectroscopy, static and time‐resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.
format Online
Article
Text
id pubmed-9804653
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-98046532023-01-06 Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry Moll, Johannes Naumann, Robert Sorge, Lukas Förster, Christoph Gessner, Niklas Burkhardt, Lukas Ugur, Naz Nuernberger, Patrick Seidel, Wolfram Ramanan, Charusheela Bauer, Matthias Heinze, Katja Chemistry Research Articles Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)(2)](2+) (1(2+) ) and [Fe(cpmp)(ddpd)](2+) (2(2+) ) with the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐di‐pyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal‐ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six‐membered chelate rings. The push‐pull ligand cpmp provides intra‐ligand and ligand‐to‐ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 1(2+) and 2(2+) were accessed by X‐ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X‐ray emission spectroscopy, static and time‐resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations. John Wiley and Sons Inc. 2022-08-10 2022-10-12 /pmc/articles/PMC9804653/ /pubmed/35862259 http://dx.doi.org/10.1002/chem.202201858 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Moll, Johannes
Naumann, Robert
Sorge, Lukas
Förster, Christoph
Gessner, Niklas
Burkhardt, Lukas
Ugur, Naz
Nuernberger, Patrick
Seidel, Wolfram
Ramanan, Charusheela
Bauer, Matthias
Heinze, Katja
Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title_full Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title_fullStr Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title_full_unstemmed Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title_short Pseudo‐Octahedral Iron(II) Complexes with Near‐Degenerate Charge Transfer and Ligand Field States at the Franck‐Condon Geometry
title_sort pseudo‐octahedral iron(ii) complexes with near‐degenerate charge transfer and ligand field states at the franck‐condon geometry
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804653/
https://www.ncbi.nlm.nih.gov/pubmed/35862259
http://dx.doi.org/10.1002/chem.202201858
work_keys_str_mv AT molljohannes pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT naumannrobert pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT sorgelukas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT forsterchristoph pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT gessnerniklas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT burkhardtlukas pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT ugurnaz pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT nuernbergerpatrick pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT seidelwolfram pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT ramanancharusheela pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT bauermatthias pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry
AT heinzekatja pseudooctahedralironiicomplexeswithneardegeneratechargetransferandligandfieldstatesatthefranckcondongeometry