Cargando…

Attitudes of optometrists towards artificial intelligence for the diagnosis of retinal disease: A cross‐sectional mail‐out survey

PURPOSE: Artificial intelligence (AI)‐based systems have demonstrated great potential in improving the diagnostic accuracy of retinal disease but are yet to achieve widespread acceptance in routine clinical practice. Clinician attitudes are known to influence implementation. Therefore, this study ai...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho, Sharon, Doig, Gordon S., Ly, Angelica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804697/
https://www.ncbi.nlm.nih.gov/pubmed/35924658
http://dx.doi.org/10.1111/opo.13034
Descripción
Sumario:PURPOSE: Artificial intelligence (AI)‐based systems have demonstrated great potential in improving the diagnostic accuracy of retinal disease but are yet to achieve widespread acceptance in routine clinical practice. Clinician attitudes are known to influence implementation. Therefore, this study aimed to identify optometrists' attitudes towards the use of AI to assist in diagnosing retinal disease. METHODS: A paper‐based survey was designed to assess general attitudes towards AI in diagnosing retinal disease and motivators/barriers for future use. Two clinical scenarios for using AI were evaluated: (1) at the point of care to obtain a diagnostic recommendation, versus (2) after the consultation to provide a second opinion. Relationships between participant characteristics and attitudes towards AI were explored. The survey was mailed to 252 randomly selected practising optometrists across Australia, with repeat mail‐outs to non‐respondents. RESULTS: The response rate was 53% (133/252). Respondents' mean (SD) age was 42.7 (13.3) years, and 44.4% (59/133) identified as female, whilst 1.5% (2/133) identified as gender diverse. The mean number of years practising in primary eye care was 18.8 (13.2) years with 64.7% (86/133) working in an independently owned practice. On average, responding optometrists reported positive attitudes (mean score 4.0 out of 5, SD 0.8) towards using AI as a tool to aid the diagnosis of retinal disease, and would be more likely to use AI if it is proven to increase patient access to healthcare (mean score 4.4 out of 5, SD 0.6). Furthermore, optometrists expressed a statistically significant preference for using AI after the consultation to provide a second opinion rather than during the consultation, at the point‐of‐care (+0.12, p = 0.01). CONCLUSIONS: Optometrists have positive attitudes towards the future use of AI as an aid to diagnose retinal disease. Understanding clinician attitudes and preferences for using AI may help maximise its clinical potential and ensure its successful translation into practice.