Cargando…

Resource limitation determines realized thermal performance of consumers in trophodynamic models

Recent work has demonstrated that changes in resource availability can alter a consumer's thermal performance curve (TPC). When resources decline, the optimal temperature and breadth of thermal performance also decline, leading to a greater risk of warming than predicted by static TPCs. We inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinton, Anna C., Vasseur, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804721/
https://www.ncbi.nlm.nih.gov/pubmed/36029291
http://dx.doi.org/10.1111/ele.14086
Descripción
Sumario:Recent work has demonstrated that changes in resource availability can alter a consumer's thermal performance curve (TPC). When resources decline, the optimal temperature and breadth of thermal performance also decline, leading to a greater risk of warming than predicted by static TPCs. We investigate the effect of temperature on coupled consumer‐resource dynamics, focusing on the potential for changes in the consumer TPC to alter extinction risk. Coupling consumer and resource dynamics generally reduces the potential for resource decline to exacerbate the effects of warming via changes to the TPC due to a reduction in top‐down control when consumers near the limits of their thermal performance curve. However, if resources are more sensitive to warming, consumer TPCs can be reshaped by declining resources, leading to increased extinction risk. Our work elucidates the role of top‐down and bottom‐up regulation in determining the extent to which changes in resource density alter consumer TPCs.