Cargando…
Reconsidering the role of glycaemic control in cardiovascular disease risk in type 2 diabetes: A 21st century assessment
It is well known that the multiple factors contributing to the pathogenesis of type 2 diabetes (T2D) confer an increased risk of developing cardiovascular disease (CVD). Although the relationship between hyperglycaemia and increased microvascular risk is well established, the relative contribution o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804800/ https://www.ncbi.nlm.nih.gov/pubmed/35929480 http://dx.doi.org/10.1111/dom.14830 |
Sumario: | It is well known that the multiple factors contributing to the pathogenesis of type 2 diabetes (T2D) confer an increased risk of developing cardiovascular disease (CVD). Although the relationship between hyperglycaemia and increased microvascular risk is well established, the relative contribution of hyperglycaemia to macrovascular events has been strongly debated, particularly owing to the failure of attempts to reduce CVD risk through normalizing glycaemia with traditional therapies in high‐risk populations. The debate has been further fuelled by the relatively recent discovery of the cardioprotective properties of glucagon‐like peptide‐1 receptor agonists and sodium‐glucose cotransporter‐2 inhibitors. Further, as guidelines now recommend individualizing glycaemic targets, highlighting the importance of achieving glycated haemoglobin (HbA1c) goals safely, the previously observed negative influences of intensive therapy on CVD risk might not present if trials were repeated using current‐day treatments and individualized HbA1c goals. Emerging longitudinal data illuminate the overall effect of excess glucose, the impacts of magnitude and duration of hyperglycaemia on disease progression and risk of CVD complications, and the importance of glycaemic control at or early after diagnosis of T2D for prevention of complications. Herein, we review the role of glucose as a modifiable cardiovascular (CV) risk factor, the role of microvascular disease in predicting macrovascular risk, and the deleterious impact of therapeutic inertia on CVD risk. We reconcile new and old data to offer a current perspective, highlighting the importance of effective, early treatment in reducing latent CV risk, and the timely use of appropriate therapy individualized to each patient's needs. |
---|