Cargando…

The ethanolic extract of Curcuma longa grown in Korea exhibits anti-neuroinflammatory effects by activating of nuclear transcription factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathway

BACKGROUND: Curcuma longa has been used as spices, food preservative, coloring material, and traditional medicine. This plant also has long been used for a variety of diseases including dyslipidemia, stomach disorders, arthritis, and hepatic diseases. The aim of the present investigation was to exam...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kwan-Woo, Lee, Young-Seob, Yoon, Dahye, Kim, Geum-Soog, Lee, Dae Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804997/
https://www.ncbi.nlm.nih.gov/pubmed/36585647
http://dx.doi.org/10.1186/s12906-022-03825-5
Descripción
Sumario:BACKGROUND: Curcuma longa has been used as spices, food preservative, coloring material, and traditional medicine. This plant also has long been used for a variety of diseases including dyslipidemia, stomach disorders, arthritis, and hepatic diseases. The aim of the present investigation was to examine the anti-neuroinflammatory effects of the 50% ethanolic extract of C. longa in lipopolysaccharide (LPS)-induced BV2 microglial cells. METHODS: Griess reaction was employed to measure the production of nitric oxide (NO), and the levels of prostaglandin E2 (PGE(2)) and pro-inflammatory cytokines such as interleukin 1-beta (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) were determined by using profit ELISA kits. Western blotting was used to determine the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), mitogen activated protein kinases (MAPKs), heme oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2). RESULTS: Pre-treatment with CLE inhibited the overproduction and overexpression of pro-inflammatory mediators including NO, PGE(2), iNOS, COX-2, and pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α in LPS-induced BV2 cells. In addition, CLE suppressed the activation of the NF-κB and three MAPK signaling pathways. Treatment with CLE induced HO-1 protein expression by activating Nrf2 pathway, and inhibiting the HO-1 expression reversed the anti-inflammatory effect of CLE. CONCLUSION: CLE showed anti-neuroinflammatory effects against LPS-induced microglial cells activation through the inhibition of production and expression of pro-inflammatory mediators by negative regulation of the NF-κB and MAPK signaling pathways. These anti-neuroinflammatory effects of CLE were mediated by HO-1/Nrf2 signaling pathway. Taken together, the present study suggests a potent effect of CLE to prevent neuroinflammatory diseases. It is necessary to perform additional efficacy evaluation through in vivo experiments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12906-022-03825-5.