Cargando…
Landscape genomics of the American lobster (Homarus americanus)
In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805075/ https://www.ncbi.nlm.nih.gov/pubmed/35960266 http://dx.doi.org/10.1111/mec.16653 |
_version_ | 1784862259625852928 |
---|---|
author | Dorant, Yann Laporte, Martin Rougemont, Quentin Cayuela, Hugo Rochette, Rémy Bernatchez, Louis |
author_facet | Dorant, Yann Laporte, Martin Rougemont, Quentin Cayuela, Hugo Rochette, Rémy Bernatchez, Louis |
author_sort | Dorant, Yann |
collection | PubMed |
description | In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to the consequences of making use of putative adaptive loci to reliably infer population structure and thus more rigorously delineating biological management units in marine exploited species. Toward this end, we genotyped 14,893 single nucleotide polymorphism (SNPs) in 4190 lobsters sampled across 96 sampling sites distributed along 1000 km in the northwest Atlantic in both Canada and the USA. As typical for most marine species, we observed a weak, albeit highly significant genetic structure. We also found that adaptive genetic variation allows detecting fine‐scale population structure not resolved by neutral genetic variation alone. Using the recent genome assembly of the American lobster, we were able to map and annotate several SNPs located in functional genes potentially implicated in adaptive processes such as thermal stress response, salinity tolerance and growth metabolism pathways. Taken together, our study indicates that weak population structure in high gene flow systems can be resolved at various spatial scales, and that putatively adaptive genetic variation can substantially enhance the delineation of biological management units of marine exploited species. |
format | Online Article Text |
id | pubmed-9805075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98050752023-01-06 Landscape genomics of the American lobster (Homarus americanus) Dorant, Yann Laporte, Martin Rougemont, Quentin Cayuela, Hugo Rochette, Rémy Bernatchez, Louis Mol Ecol ORIGINAL ARTICLES In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to the consequences of making use of putative adaptive loci to reliably infer population structure and thus more rigorously delineating biological management units in marine exploited species. Toward this end, we genotyped 14,893 single nucleotide polymorphism (SNPs) in 4190 lobsters sampled across 96 sampling sites distributed along 1000 km in the northwest Atlantic in both Canada and the USA. As typical for most marine species, we observed a weak, albeit highly significant genetic structure. We also found that adaptive genetic variation allows detecting fine‐scale population structure not resolved by neutral genetic variation alone. Using the recent genome assembly of the American lobster, we were able to map and annotate several SNPs located in functional genes potentially implicated in adaptive processes such as thermal stress response, salinity tolerance and growth metabolism pathways. Taken together, our study indicates that weak population structure in high gene flow systems can be resolved at various spatial scales, and that putatively adaptive genetic variation can substantially enhance the delineation of biological management units of marine exploited species. John Wiley and Sons Inc. 2022-08-27 2022-10 /pmc/articles/PMC9805075/ /pubmed/35960266 http://dx.doi.org/10.1111/mec.16653 Text en © 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | ORIGINAL ARTICLES Dorant, Yann Laporte, Martin Rougemont, Quentin Cayuela, Hugo Rochette, Rémy Bernatchez, Louis Landscape genomics of the American lobster (Homarus americanus) |
title | Landscape genomics of the American lobster (Homarus americanus) |
title_full | Landscape genomics of the American lobster (Homarus americanus) |
title_fullStr | Landscape genomics of the American lobster (Homarus americanus) |
title_full_unstemmed | Landscape genomics of the American lobster (Homarus americanus) |
title_short | Landscape genomics of the American lobster (Homarus americanus) |
title_sort | landscape genomics of the american lobster (homarus americanus) |
topic | ORIGINAL ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805075/ https://www.ncbi.nlm.nih.gov/pubmed/35960266 http://dx.doi.org/10.1111/mec.16653 |
work_keys_str_mv | AT dorantyann landscapegenomicsoftheamericanlobsterhomarusamericanus AT laportemartin landscapegenomicsoftheamericanlobsterhomarusamericanus AT rougemontquentin landscapegenomicsoftheamericanlobsterhomarusamericanus AT cayuelahugo landscapegenomicsoftheamericanlobsterhomarusamericanus AT rochetteremy landscapegenomicsoftheamericanlobsterhomarusamericanus AT bernatchezlouis landscapegenomicsoftheamericanlobsterhomarusamericanus |